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Interactive curve modeling techniques and their applications are extremely useful
in a number of academic and industrial settings. Specifically, curve modeling plays
a significant role in multidisciplinary problem solving. It is extremely useful in
various situations like font design, designing objects, CAD/CAM, medical imag-
ing and visualization, scientific data visualization, virtual reality, object recogni-
tion, etc. In particular, various problems like iris recognition, fingerprint recog-
nition, signature recognition, etc. can also be intelligently solved and automated
using curve techniques. In addition to its critical importance more recently, the
curve modeling methods have also proven to be indispensable in a variety of mod-
ern industries, including computer vision, robotics, medical imaging, visualiza-
tion, and even media.

This book aims to provide a valuable source that focuses on interdisciplinary
methods and to add up-to-date methodologies in the area. It aims to provide the
user community with a variety of techniques, applications, and systems necessary
for various real-life problems in the areas such as font design, medical visualiza-
tion, scientific data visualization, archaeology, toon rendering, virtual reality, body
simulation, outline capture of images, object recognition, signature recognition,
industrial applications, and many others.

Book Features

It aims to collect and disseminate information in various disciplines including
computer graphics, image processing, computer vision, pattern recognition, artifi-
cial intelligence, soft computing, shape analysis and description, curve and surface
fitting, scientific visualization, shape abstraction and modeling, intelligent CAD
systems, computational geometry, reverse engineering, and levels of details for
curves and surfaces. The major goal of this book is to stimulate views and provide
a source where students, researchers, and practitioners can find the latest devel-
opments in the field of interactive curve modeling and its applications. The book
provides classical and up-to-date theory and practice to get the problems solved in
diverse areas of science and engineering.

All the chapters of the book will contribute toward curve modeling techniques,
applications, and systems. The book will have the best possible utility for stu-
dents, researchers, computer scientists, practicing engineers, and many others who
seek classical and state-of-the-art techniques, applications, and systems with curve
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modeling. It will be an extremely useful book for undergraduate senior students as
well as graduate students in the areas of computer science, engineering, and other
computational sciences.

Suggested Course Outlines

This book is designed to have around fifteen chapters. These chapters will con-
tribute toward interactive curve modeling techniques, applications, systems, and
tools. The book is planned to have the best possible utility for researchers, com-
puter scientists, practicing engineers, and many others who seek classical and
state-of-the-art techniques and applications for computer graphics, vision, and
imaging. It will also be equally and extremely useful for undergraduate senior
students as well as graduate students in the areas of computer science. It is also
beneficial to students in other disciplines including computer engineering, electri-
cal engineering, mechanical engineering, and mathematics. The book is equally
beneficial to researchers and practitioners in the industry and academia.

The book has been designed as a course book for undergraduate as well as grad-
uate students in the area of computer science in particular. The main audience of
the book are the communities related to the field of computer graphics, vision,
and imaging. However, it can be useful for students in other disciplines like com-
puter engineering, electrical engineering, mechanical engineering, mathematics,
etc. The book is equally beneficial to researchers and practitioners in the industry.
The book can formulate at least three courses as follows:

Course I. As an undergraduate course, at senior level, Chaps. 1–3, 8, 9, 11 (any
two corner detectors), 12 (any two methods), 13, and 14 (one heuristic
approach) will comprise a full length three credit hours course for a semester
of 15 weeks. This course can be conducted with practical projects of reason-
able weight.

Course II. As a graduate course consisting of Chaps. 1–4, 6–8 (self-study), 9, and
11–14 (one heuristic approach). This course should also have heavy projects
for practical applications.

Course III. As a slightly different graduate course, if the undergraduate course
described in Course I is considered to be a prerequisite. This course can be
designed with Chaps. 4–7, 9 (using other curve schemes in the book but
different than those in Chap. 9), 11–13 (just a quick review), 14, and 15.
This course design can also consist of some state-of-the-art topics together
with good weighted projects.

The researchers and practitioners can utilize the manuscript as a source as well
as a reference book. Depending on their needs, they can study on pick and choose
basis. They are also advised to study in their leisure time as it may prove to be
fruitful to them.
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Required Background

As such, it is not required to possess a specific qualification as a prerequisite to any
of the undergraduate Course I or graduate courses II or III mentioned above. But,
the user of this book is presumed to have some knowledge of computer program-
ming together with some basic mathematical topics including analytic geometry,
linear algebra, and calculus.
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1
Introduction

Abstract. Interactive curve designing plays an important role not only in the construction
and reconstruction of various objects, but also in the description of geological, physical,
medical, and different other phenomena. This book presents a description and analysis
of a variety of classes of splines for use in CAGD (computer-aided geometric design),
CAD (computer-aided design), CAE (computer-aided engineering), CAM (computer-aided
manufacturing), computer graphics, computer vision, image processing, and other disci-
plines. They are useful for the representation of parametric curves in both interpolatory
and B-spline-like forms. Scalar function forms will also be discussed occasionally. The
specific spline description and the type of continuity constraints between the pieces of the
splines can be used to influence, design, and control the shape of the curves. Different para-
meters in the description of splines can be used for various applications including design in
CAD/CAM, font design, image outline capture, multiresolution, description of motion paths
for moving objects such as robots, data visualization, reverse engineering, curve or surface
editing, object recognition, and so on.

The book is designed specifically for undergraduate as well as graduate students in the
area of computer science. The main audience for the book are the communities related
to the fields of computer graphics, vision, and imaging. However, the book can also be
useful to students in other disciplines such as computer engineering, electrical engineer-
ing, mechanical engineering, mathematics, and so on. The book is equally beneficial for
researchers and practitioners.

1.1 Strategy in the Construction of Theory

This book will mainly discuss spline curves in both rational and nonrational
forms, although some other curve formulations may also be described occasion-
ally. The spline formulation has manifested itself in various forms including
Bézier curves, rational Bézier curves, B-splines, NURBS (nonuniform ratio-
nal B-splines), beta-splines, rational beta-splines, weighted Nu splines, rational
weighted Nu splines, and others. A single function usually does not have enough
freedom to represent a given curve. Thus, several segments are joined together to
generate a spline curve.

1



2 1. Introduction

There are at least two methods to visualize the mathematics of a rational curve
p(t).

1. The curve p can be thought of as a vector-valued function in RN , each com-
ponent of which is a rational function, i.e., the numerator and denominator are
polynomial functions.

2. The value p can be thought of as the projection of a vector-valued polynomial
function f in RN+1 into RN . The value f is referred to as the homogeneous
curve associated with p.

Method 2 has the advantage that algorithms for manipulating rational curves
such as evaluation, subdivision, degree elevation, etc., can often be obtained by
using the corresponding algorithm for polynomial curves. However, this can be a
restriction in that the numerator and denominator are assumed to obey the same
polynomial spline description. Method 1 is less restrictive and gives us more free-
dom to develop shape control parameters which behave in a well-defined and well-
controlled way. The approach of Method 1 is adopted throughout this book, where
ever applicable, to deal with rational splines. Method 1 is also applicable to non-
rational (polynomial) splines.

Bézier (rational Bézier) and B-spline (or B-spline-like) curves/surfaces are
powerful tools, and are found incorporated into most existing CAD/CAM and
computer graphics systems. This book was produced mainly for developing these
concepts and using them for a variety of applications in the areas of computer
graphics, vision, and imaging.

1.2 Overview

1.2.1 Splines
The generation of spline curves [1–48] is a useful and powerful tool in CAGD.
Although the splines have many elegant properties discussed in Refs. 1–10, 14–15,
21, 27–28, 36, and 40–42, the curves sometimes exhibit undesirable oscillations.
Various methods have been developed to control the shape of a curve, such as those
described in Refs. [1–4, 9, 13, 16–18, 22, 28–36, 38–45, 47, 48]. Some methods are
well suited for one type of shape control, but not well suited for another. For this
reason, a multipurpose system was developed in Refs. 36 and 40, which consists
of different spline methods and uses the particular spline that is best suited for the
desired type of shape control. Thus, to avoid a multiplicity of methods, one method
can suffice that is capable of generating a broad range of interpolating curves, is
easy to implement, provides a shape control according to the user’s wishes, and is
computationally economical. This problem is discussed in Chapters 2–5.

Chapter 2 presents a description and analysis of a cubic spline in both interpo-
latory as well as B-spline forms. It is actually a weighted Nu spline. Two shape
parameters are introduced in the description that provide a variety of shape con-
trols such as point and interval tensions. Similarly, Chapter 3 presents a description
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and analysis of a rational cubic spline in both interpolatory and B-spline forms.
This rational spline provides not only a computationally simple alternative to the
exponential based spline under tension, but also provides a C2 alternative to the
well-known existing GC2 or C1 methods such as cubic Nu splines of Nielson [31],
β-spline representation of such cubics by Barsky and Beatty [2], γ -splines of
Boehm [6], and weighted Nu splines [17]. This method is the generalization of
the rational spline with tension [28]. Two shape parameters are introduced in each
interval that provide a variety of shape controls such as biased, point, and interval
tensions.

Chapter 4 uses general piecewise rational cubics subject to a general type of
continuity constraint between the pieces; we will call them rational σ-splines.
These are a generalization of most of the above-mentioned methods and provide
economical alternatives to the rest of them. Also, the development of a local sup-
port basis for the B-spline-like representation of rational σ-splines can be used to
obtain methods in Refs. 1–2, 6–8, 17, and 28. The B-spline-like basis form of the
curves can also be used to solve the interpolation problems.

Chapter 5 discusses similar issues to those discussed in Chapter 4. But it also
considers linear, quadratic, and cubic splines. Various kinds of continuity con-
straints are believed to have a more interactive and well-controlled spline formu-
lation. It can enable the user to have a formulation that may be desired to model
an object with multiple choice of pieces for designing purposes. Although a local
support basis for the B-spline-like representation of such splines was considered, it
was not desired and hence is not discussed. A brief discussion of touch-to-surface
design (although it is not the main objective of this book) has been also provided
in Chapter 5, as an application of curves. These surfaces are based on just curve
manipulations and can provide only limited control for designing.

1.2.2 Shape-Preserving Interpolation
Shape-preserving problems [11, 19, 23–25, 27, 40, 50–55] for plane curves are
discussed in Chapter 6, which is an extension of the results of Delbourgo and
Gregory [11] who developed the rational cubic of Chapter 2 (with one shape para-
meter in each interval) to solve the problem of shape-preserving interpolation for
scalar curves. The spline curves here explore the shape control parameters, which
depend on the first derivative data in such a way that the interpolant preserves
the monotonic and/or convex shape of the data. Chapters 7 and 8 complement
Chapter 6 in the context of scalar shape-preserving curves for the visualization of
shaped data. Chapter 7 is related to a rational spline interpolation, while Chapter 8
uses cubic splines. The nature of the data considered may be positive, monotonic,
or convex.

1.2.3 Functional Approximation
Chapter 9 is devoted solely to the idea of approximation of curves [56–64] when
they result from complex functions or complex data. Two methods [62–64] are
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presented as a solution to the problem. One scheme is based on a determini-
stic approach [62] using quadratic B-splines. The other scheme uses a genetic
algorithm in its formulation [63] where the B-spline can have any order. Both of
the schemes presented in this chapter automatically compute data points to mini-
mize errors.

1.2.4 Spiral Curves
The spiral curves [65–72] are desirable for applications such as highway route
designing, robot path planning, data-fitting problems, shape design, and curve/
surface fairing in geometric modeling. Due to the success of raster displays, scan
conversion algorithms are fundamental in computer graphics. Most of the time,
straight lines and curved primitives are considered for scan conversion, but compli-
cated curve primitives such as spirals are considered less frequently for direct scan
conversion. In Cartesian coordinates they are typically transcendental functions,
which makes the evaluation on Cartesian grids an inefficient process. Chapter 10
describes the issues concerning the scan conversion of Archimedes spiral. A sim-
ple algorithm [65–67] based on the piecewise circular approximations has been
reported. Variations of the algorithm to convert other types of spirals has also
been considered.

Chapter 10 also presents an efficient geometric algorithm [72] for visualization
of two-point geometric Hermite conic and arc/conic spiral segments. A compara-
tive study is made of Tschirnhausen cubic spirals.

1.2.5 Corner Detection and Curve Segmentation
Chapter 11 highlights the feature of curve segmentation. This is mainly for digital
curves, which may consist of huge amounts of data. The large data set is subdivi-
ded into smaller data sets to overcome the problem on the basis of “divide and
rule.” This is done by detecting the points that appeal to the eye visually, as with
a corner point. Corners [73–84] in digital images give important clues for shape
representation and analysis. If the corner points are identified properly, a shape can
be represented in an efficient and compact way with sufficient accuracy in many
shape analysis problem. Shape representation and image interpretation depends
most of the time on how correctly and efficiently the corner points are located.
Specifically, in the area of vectorizing planar images, contour segmentation is very
often managed by locating the exact corner points.

As many as seven techniques [73–84] have been discussed for the corner detec-
tion. These techniques have been described, implemented and analyzed. Various
practical examples have been given to test and compare the methods. Merits and
demerits of each method together with the default selection or a variable selec-
tion of parameters are stated. Tabular and graphical results are provided for a clear
comparative study so that user can select the best for the need.
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1.2.6 Vectorizing Planar Shapes
Chapters 12 and 13 are aimed at vectorizing planar images [85–101]. Chapter 12 is
devoted to a detailed study of linear or polygonal approximation [102] needed in
various applications, including shape recognition, point-based motion estimation,
coding methods, and so on, in the areas of computer graphics, imaging, and vision.
Some important aspects related to capturing with linear approximation have been
addressed. A detailed survey has been made of many methods [85–101] in the
current literature. Some commonly discussed algorithms are explained, and their
results are demonstrated and compared.

Automatic and efficient algorithms for outline capture of character images,
stored as bitmaps, are presented in Chapter 13. A curve methodology [90] based
on the Bézier cubic formulation is discussed in detail. Various steps have been
described for the completion of the algorithm designed. This method is well suited
for characters of non-Roman languages such as Arabic, Japanese, Urdu, Persian,
and so on. The process of capturing outlines includes various steps including
detection of boundaries, identifying corner points and break points, and fitting
the curve. The chapter thoroughly discusss automating the above process and pro-
vides optimal results. As an alternate smoother scheme, the Hermite cubic spline
curve method [95] is also introduced.

1.2.7 Reverse Engineering
Computer-aided reverse engineering (CARE) is an important area of study in the
modern age of computers. Multiple solutions in advanced and modern industries
are being provided with regard to design and manufacturing [106–108]. In modern
designi, scanned digital data leads us to adopt contour styling [98–102], which
helps to guide visual acceptance after adopting some curve or surface approxi-
mation scheme [103–105].

Various objects including manufactured parts or human body parts are designed
and redesigned with complex free-form geometry. This trend is quite popular and
can be found in various applications in recent years such as vehicle body design.
The wide acceptance of free-form curves and surfaces for component design can
also be attributed to the advances in curve and surface modelling and their imple-
mentations in CAD/CAM/CAE/CARE systems.

This chapter focuses on CARE. Although reported techniques have been pre-
sented for image-based planar objects, they are also extendable to objects in 3D
with some modifications. Two nondeterministic evolutionary approaches [98,108]
have been presented. Nonuniform rational B-splines (NURBS) have been utilized
as an underlying approximation curve scheme. Simulated annealing and simulated
evolution heuristics have both been used as evolutionary methodologies. Opti-
mized NURBS models have been fitted over the contour data of the planar shapes
for the ultimate and automatic output. The output results are visually pleasing with
respect to the threshold provided by the user.
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1.2.8 Multiresolution Framework
In the field of geometric modeling, the construction of efficient, intuitive, and
interactive editors [109–115] for geometric objects is a fundamental objective.
In many freeform geometric modeling systems the users are allowed to work
within the framework of a specific data model such as Bézier or nonuniform
B-splines. This imposes constraints on the set of geometric manipulation oper-
ations that can be performed, the man-machine interface, and the type of objects
that can be modeled.

Multiresolution representation [109–115] is a possible solution that allows the
user to edit objects at different resolution levels. Both local and global operations
can be performed on curves by representing them using multiresolution decompo-
sition. Several approaches have been proposed for multiresolution representation
of splines in the case of curves and surfaces. It often requires specific treatment
of boundary control points. These approaches depend on the given spline model
they manipulate. Chapter 15 presents multiresolution approaches for the uni-
form B-splines or nonuniform B-splines (NUBS). NUBS are specifically useful
because, by manipulating the control points, knot vector, and weights, they facili-
tate design of a large variety of shapes. They offer a common mathematical form
for representing and designing both standard analytic shapes (conics, quadrics)
and free-form curves and surfaces. Evaluation is reasonably fast and computation-
ally stable. NUBS have a clear geometric toolkit (knot insertion/deletion, degree
elevation, etc.), which can be used to design, analyze, process, and interrogate
objects.

1.3 Notation and Conventions

• The symbol RN will be used to denote the N -dimensional real space.
• Knot partitions will be assumed as

t̃0 < t̃1 < . . . < t̃m, (1.1)
t0 < t1 < . . . < tm . (1.2)

(1.1) and (1.2) for bivariate case and (1.2) for univariate case.
• For any i the transformations

θ ≡ θ (t) = (t − ti ) /hi ,

θ̃ ≡ θ̃
(
t̃
) = (t̃ − t̃i

)
/h̃i ,

}
(1.3)

will be commonly used where

hi = ti+1 − ti , h̃ j = t̃ j+1 − t̃ j , (1.4)

• Fi , i = 0, 1, . . . , n will denote the interpolatory points and �i will be used for
the ratios of the type:

�i = (Fi+1 − Fi )/hi . (1.5)



1.4. Review of Some Spline Methods 7

Pi can also be used interchangeably with Fi whenever needed. However, fi will
replace Fi whenever the data is in scalar form.

• Di will be used for the first derivative value at the knot ti . However, di will be
used for the first derivative value whenever the spline is in scalar form.

• Given a function such as p(t), we will denote the i th derivative by p(i)(t). In
the case of scalar functions, s will replace p.

• Given a function such as p(
∼
t , t), we use the notation pt̃t (t̃, t

)
to denote the first

partial derivative with respect to t̃ and the first partial derivative with respect to
t . That is

pt̃t (t̃, t
) = ∂2 p

∂ t̃∂t
,

and so on.
• For brevity, and when no ambiguity can arise, the independent variables are left

off expressions such as pt̃ (t̃, t
)

yielding simply pt̃

• We will call a function p (t) σ-continuous at t = ti if it satisfies the following
constraints:

⎡

⎢
⎣

p(ti+)

p(1) (ti+)

p(2) (ti+)

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0 0
0 σ1,i 0
0 σ2,i σ3,i

⎤

⎥
⎦

⎡

⎢
⎣

p (ti−)

p(1) (ti−)

p(2) (ti−)

⎤

⎥
⎦ , (1.6)

• p ∈ Cm [t0, tn] will mean that each component function of p ∈ Cm [t0, tn] →
RN is m-times continuously differentiable on [t0, tn]. Similarly the notations
GCm will be fixed for geometric (reparametrization) continuity.

• We will use ‖ . ‖ to denote the uniform norm, either on [t0, tn] or
[
ti , ti+1

]
.

1.4 Review of Some Spline Methods

In this section a brief review of some of the existing spline methods is given
because these can be considered either as an alternative or as particular cases of the
spline methods which are going to be discussed in the theory of the thesis. For each
of the splines, we assume the knot partition (1.2) and the values Fi , i = 0, . . . , n
at the knots. Throughout the discussion, we will denote the spline curve by p (t).

1.4.1 Cubic Spline
The natural cubic spline [15] is the C2 piecewise cubic function that minimizes

V ( f ) =
∫ tn

t0

(
f (2)(t)

)2
dt, (1.7)

over all functions in H2 [t0, tn]. H2 [t0, tn] consists of all functions that have a
first derivative that is absolutely continuous and that has a second derivative that
belongs to L2 [t0, tn].
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1.4.2 Spline Under Tension
The spline under tension was first introduced by Schweikert [39] and then later
discussed by Barsky [3]. The idea was to introduce a new term in equation (1.7)
in such a way that some shape control was obtained. Thus, Barsky [3] constructs
the spline under tension as the interpolating function in H2 [t0, tn] that minimizes

V ( f ) =
∫ (tn)

t0
( f (2)(t))2dt +

n−1∑

i=0

wi

∫ ti+1

ti

(
f (1)(t)

)2
dt, (1.8)

where wi > 0, for i = 0, . . . , n −1. The minimizing function is a piecewise expo-
nential and linear function that belongs to C2. The constants wi ’s can be used to
control the tension of the curve on the interval

[
ti , ti+1

]
for all i . As wi increases,

the exponential-based spline under tension becomes tighter on that interval.

1.4.3 Weighted Spline
The weighted spline in Refs 17 and 20 is the interpolating function that minimizes

V ( f ) =
∫ tn

t0
w(t)

(
f (2)(t)

)2
dt, (1.9)

where w(t) is a positive integrable function. The minimizing function belongs to
C1. If w(t) is a piecewise constant function, then the weighted spline is a C1

piecewise cubic polynomial. If w(t) is large on one interval, relative to bordering
intervals, then the weighted spline become tighter on that interval in a manner
similar to the spline under tension. It should be noted that the spline under tension
is C2, but is computationally more expensive because it is a piecewise exponential,
whereas the weighted spline is a piecewise cubic but it only belongs to C1.

1.4.4 Nu-spline
The v-spline in Refs. 32 and 34 is the interpolating function in H2 [t0, tn] that
minimizes

V ( f ) =
∫ tn

t0

(
f (2)(t)

)2
dt +

n∑

i=0

vi

(
f (1)(ti )

)2
dt, (1.10)

where vi ≥ 0, for i = 0, . . . , n. As noted in Ref. 34, the v-spline is a C1 piecewise
cubic function that does not mimic splines in tension well in the functional case.
However, in the parametric case the v-spline has geometric continuity of order 2,
that is, it is C2 under an appropriate reparametrization, and as vi increases, the
v-spline curve becomes tighter at the i th interpolation point because the magnitude
of the tangent vector approaches zero.
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1.4.5 Weighted Nu-spline
The weighted v-spline [17] is the marriage of the weighted spline and the v-spline.
It is the C1 piecewise cubic interpolatory function P (t) that minimizes

V ( f ) =
n−1∑

i=0

wi

∫ tn

t0

(
f (2)(t)

)2
dt +

n∑

i=0

vi

(
f (1)(ti )

)2
dt, (1.11)

where wi > 0 for i = 0, . . . , n − 1 and vi ≥ 0 for i = 0, . . . , n. The vi are termed
as point tension factors because they tighten a parametric curve at the i th interval
in the same way as they do for the v – spline in Refs. 32 and 34. The wi are termed
interval weights because they tighten the curve on the i th interval in the same way
as they do for the weighted splines in Ref. 20. If vi = 0 and all wi = c, where c
is some constant value, then the weighted v – spline is the C2 cubic spline. If all
wi = c, then the weighted v – spline equals the v – spline in [32] with tension
factors vi/c. If all vi = 0, then it equals the weighted spline given in [20].

Remark 1.1. It was proven in [17] that if p(t) is any C1 weighted v – spline that
minimizes (1.11), then

wi p(2) (ti+) − wi−1 p(2) (ti−) = vi p(1) (ti ) , i = 1, . . . , n − 1. (1.12)

This result generalizes the results of Salkauskas [20] that a weighted spline
satisfies

wi p(2)(ti+) = wi−1 p(2)(ti−) (1.13)

and the results of Nielson [32] that a v – spline satisfies

p(2) (ti+) − p(2) (ti−) = vi p(1) (ti ) . (1.14)

1.4.6 Beta Splines
The β – spline [1] is a piecewise cubic function p(t) that satisfies the following
derivative constraints:

⎡

⎢
⎣

p(ti+)

p(1) (ti+)

p(2) (ti+)

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0 0
0 β1,i 0

0 β2,i β2
1,i

⎤

⎥
⎦

⎡

⎢
⎣

p (ti−)

p(1) (ti−)

p(2) (ti−)

⎤

⎥
⎦ , (1.15)

where β1,i ≥ 1, i = 0, . . . , n−1 and β2,i ≥ 0, i = 0, . . . , n. The β1,i ’s are known
as biased tension factors because they pull the curve to one side. The parameters
β2,i ’s are known as point tension factors because they behave exactly like the vi in
the v – splines. If β2,i = 0 and β1,i = 1, then the β – spline is the C2 cubic spline.
If β1,i = 1, then it equals the v – spline. For parametric curves, the constraints
(1.15) mean that the curve is GC2 (geometric continuity of order 2).
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1.4.7 Sigma (σ) Splines
The σ – spline of Sarfraz [12, 41] is a piecewise cubic function p(t) that satisfies
the derivative constraints in Equation (1.6). where σ1,i ≥ 1, i = 0, . . . , n − 1
and σ2,i ,σ3,i ≥ 0, i = 0, . . . , n. The σ1,i ’s are known as biased tension factors
because they pull the curve to one side. The parameters σ2,i ’s are known as
point tension factors because they behave exactly like the vi in the v – splines.
If σ2,i = 0, σ3,i = 1 and σ1,i = 1, then the σ – spline is the C2 cubic spline.
If σ3,i = 1 and σ1,i = 1, then the σ – spline equals the v – spline. Similarly, one
can recover the weighted spline, the weighted Nu spline, and various other splines
as a result of particular assignments of σ ’s. For parametric curves, the constraints
(1.6) mean that the σ – spline curve is GC1 (geometric continuity of order 1). But,
in most of the special cases, the continuity varies from C1 to C2.

1.4.8 B-Splines
The recursive function N k

j (u) given by the equations

N 1
j (u) =

{
1 i f u ∈ [u j , u j+1)

0 otherwise
N k

j (u) = u−u j
u j+k−1−u j

N k−1
j (u) + u j+k−u

u j+k−u j+1
N k−1

j+1 (u),

⎫
⎪⎬

⎪⎭
(1.16)

is called the normalized B-spline basis function of order k (degree k − 1). The
numbers u j ≤ u j+1 ∈ R are called knot values or simply knots, and 0/0 = 0 by
definition.

The curve s(u) defined by

p(u) =
n∑

l=0

N k
l (u)Pl , u ∈ [uk−1, un+1] (1.17)

is called the B-spline curve of order k (degree k − 1), where N k
l (u) is the

l th normalized B-spline basis function, for the evaluation of which the knots
u0, u1, . . . , un+k are necessary. The points Pi are called control points or de
Boor-points, while the polygon formed by these points is called control polygon.

The j th span of the B-spline curve can be written in the form

p j (u) =
j∑

l= j−k+1

N k
l (u)Pl , u ∈ [u j , u j+1). (1.18)

Modifying the knot ui , the point of this span associated with the fixed parameter
value ũ ∈ [u j , u j+1) will move along the curve.

Nonuniform rational B-spline (NURB) curves are generated from the following
formula:

p̂(u) =

n∑

i=0
wi Pi Ni,k(u)

n∑

i=0
wi Ni,k(u)

(1.19)
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where Pi , i = 0, 1, . . ., n, are control points, wi are weights, and Ni,k(u) are
B-spline basis functions.

1.4.9 Bézier Splines
Given (n + 1) points Pi : i = 0, 1, 2, . . ., n, Bézier curve is defined as follows:

P(t) =
n∑

i=0

Pi Bi (t), 0 ≤ t ≤ 1, (1.20)

where
Bi (t) =

(
n
i

)
(1 − t)n−i t i ,

are Bernstein polynomials. Here we will refer to Bi (t)’s as Bézier blending func-
tions. For example, for n = 3, equation (1.20) will reduce to:

P(t) =
n∑

i=0

Pi Bi (t),

= P0 B0(t) + P1 B1(t) + P2 B2(t) + P3 B3(t),

=
(

3
0

)
(1 − t)3 P0 + P1

(
3
1

)
(1 − t)2t + P2

(
3
2

)
(1 − t)t2 + P3t3,

= (1 − t)3 P0 + 3P1(1 − t)2t + 3P2(1 − t)t2 + P3t3. (1.21)

The polynomials

(1 − t)3, 3(1 − t)2t, 3(1 − t)t2, t3,

are called Bézier cubic blending functions. The convex hull of points Pi , i =
0, 1, . . ., n is (roughly speaking) the region surrounded by Pi ’s. The points Pi ’s
are also known as control points, and the polygon connected by Pi ’s is called
control polygon. There are some interesting properties worth noting:

1. The degree of a Bézier curve is one less than the given control points.
2. The Bézier curve always pass through the first and last points.
3. The Bézier curve always remains within the convex hull of the control polygon.
4. The Bézier curve always satisfies the variation diminishing property. That is,

the property that curve does not cross any straight line more than the control
polygon crosses.

1.4.10 Hermite Splines
Let

P (0) = P0, P (1) = P3, P(1) (0) = D0, P(1) (1) = D1.
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Then (1.21) becomes like the following:

P(t) = (1 − t)3 P0 + 3t (1 − t)2
(

P0 + D0

3

)
+ 3t2(1 − t)

(
P3 − D1

3

)
+ t3 P3.

(1.22)

The curve in equation (1.22) is called Hermite cubic curve where 0 ≤ t ≤ 1 can
be interchanged with 0 ≤ θ ≤ 1 without loss of generality. Higher-degree Hermite
curves can also be defined in a similar manner. To have a more precise and general
notation for a Hermite cubic spline curve, let us adopt the following:

P (0) = Pi , P (1) = Pi+1, P(1) (0) = Di , P(1) (1) = Di+1.

Then, the Hermite curve takes the following form:

P(t) = (1 − θ)3 Pi + 3θ(1 − θ)2
(

Pi + hi Di

3

)

+3θ2(1 − θ)

(
Pi+1 − hi Di+1

3

)
+ θ3 Pi+1, (1.23)

where θ and hi are defined in equations (1.3) and (1.4). If we have the points as
follows:

P0, P1, P2, . . ., Pn (1.24)

Then, we can fit Hermite curve pieces between each pair of points for i =
0, 1, 2, . . . , n − 1. The curve represented in (1.24) is called a Hermite spline pro-
vided the information about the tangents Di ’s is given. Let us define Di ’s as fol-
lows:

D0 = 2(P1 − P0) − (P2 − P0)/2,
Dn = 2(Pn − Pn−1) − (Pn − Pn−2)/2,
Di = ai (Pi − Pi−1) + (1 − ai )(Pi+1 − Pi ), i = 1, 2, 3, . . . , n − 1,

⎫
⎬

⎭
(1.25)

where
ai = |Pi+1 − Pi |

|Pi+1 − Pi | + |Pi − Pi−1| .
Although the tangents provided in equations (1.25) will produce open curves,

they can be easily oriented to produce closed curves too.
The Hermite spline P(t) will be called a cardinal spline provided the derivative

values Di ’s are changed as follows:

Di = 1
2
(1 − αi )(Pi+1 − Pi−1),

Di+1 = 1
2
(1 − αi )(Pi+2 − Pi ).

In this case, we would have the curve segments for i = 1, 2, . . . , n − 2. The
parameter αi is called tension parameter because it tightens or loosens the curve
when it increases or decreases. When αi = 0, the cardinal spline is called Catmull-
Rom spline or Overhauser spline.
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The Hermite spline P(t) will be called a Kochanek-Bartels spline provided the
derivative values Di ’s are changed as follows:

Di = 1
2
(1 − αi )

[
(1 + βi )(1 − γi )(Pi − Pi−1) + (1 − βi )(1 + γi )(Pi+1 − Pi )

]
,

Di+1 = 1
2
(1 − αi )

[
(1 + βi )(1 − γi )(Pi+1 − Pi ) + (1 − βi )(1 + γi )(Pi+2 − Pi+1)

]
,

where

• αi is a tension parameter.
• βi is a biased parameter.
• γi is a continuity parameter.

The parameter values βi = 0 = γi produce the cardinal spline.

1.5 Summary

This chapter provides introductory material that is useful before studying the rest
of the book. It provides notation, a summary of spline methods and their history,
and a rich bibliography. The chapter also describes who should study the book.
Some valuable suggestions have also been made regarding the structure of the
book for course work at both the undergraduate and graduate levels.

1.6 Exercises

1. What is this book about?
2. What is a spline?
3. Name at least 10 spline methods in the literature.
4. Write programs to plot the following spline curves:

(a) Quadratic B-spline
(b) Cubic B-spline
(c) Bézier curves of arbitrary degree.
(d) Cubic Hermite spline
(e) Cardinal spline
(f) Kochanek Bartel spline.

5. Name at least 20 applications where a spline can be used.
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2
Weighted Nu Splines

Abstract. Weighted ν-splines are the composition of two spline methods, namely, weighted
splines and ν-splines. These are the generalization of cubic spline method and are
highly useful for CAD/CAM and various applications in computer graphics. Both—
interpolatory and freeform—schemes are available in the literature. This chapter explains
interpolatory weighted ν-splines together with a construction of its B-spline-like form.
The design curves, constructed through B-spline-like form, possess all the ideal geometric
properties such as partition of unity, convex hull, and variation diminishing. The splines
provide not only a variety of very interesting shape control such as point and interval
tensions but also, as a special case, recover the cubic spline method. In addition, these
weighted ν-splines also provide, as special cases, the weighted splines and the ν-splines.
The method for evaluating these splines is suggested by a transformation to Bézier form.

2.1 Introduction

Designing of curves, especially those curves that are robust and easy to control and
compute, has been one of the significant problems of computer graphics and geo-
metric modeling. Specific applications including font designing, capturing hand-
drawn images on computer screens, data visualization, and computer-supported
cartooning are main motivations toward curve designing. In addition, various other
applications in CAD/CAM/CAGD are also a good reason to study this topic. Many
authors have worked in this direction. For brevity, the reader is referred to [1–22].

A cubic spline curve method is considered to be a considerably decent approach
for designing applications in the area of computer graphics and geometric mod-
eling. However, due to its various limitations, such as lack of freedom in shape
control, a designer may not have much help. In this study, the weighted ν-spline
method has been reviewed. This curve design method, in addition to enjoying the
good features of cubic splines, possesses interesting shape design features too.
It has two families of shape parameters working in such a way that one family
of parameters is associated with intervals and the other with points. These para-
meters provide a variety of shape control such as point and interval tension. This
is an interpolatory curve scheme, which utilizes a piecewise cubic function in its
description. However, it is desired to extend this idea to freeform curves, which

21
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can enjoy all the ideal properties related to B-spline theory. This work is mainly
concerned with developing such a theory.

Weighted splines [7] were discovered as a cubic spline method. The method
provides a C1 computationally simpler alternative to the exponential spline-under-
tension [4, 13, 20]. Regarding shape characteristics, it has shape control parame-
ters associated with each interval, which can be used to flatten or tighten the curve
locally. Nu-splines [11,12] were discovered as another cubic spline method. It pro-
vides a GC2 computationally simpler alternative to the exponential spline-under-
tension [4,13,21]. Regarding shape characteristics, it has shape control parameters
associated with each point, which can be used to tighten the curve both locally and
globally. The ideas of weighted splines and Nu-splines were married together to
formulate another spline called weighted Nu-spline [11, 12, 19, 22]. This curve
design method covers the shape features of both of its counter parts and provides
a C1 computationally economical method.

B-splines are a useful and powerful tool for computer graphics and geometric
modeling. They can be found frequently in the existing CAD/CAM (computer-
aided design/computer -aided manufacturing) systems. They form a basis for the
space of n th degree splines of continuity class Cn−1. Each B-spline is a non-
negative n th-degree spline that is nonzero only on n + 1 intervals. The B-splines
form a partition of unity, that is, they sum up to one. Curves generated by summing
control points multiplied by the B-splines have some very desirable shape proper-
ties, including the local convex hull property and variation diminishing property.

It is desirable to generalize the idea of B-spline-like local basis functions for the
classes of splines with shape parameters considered in the description of continu-
ity. The first local basis for GC2 splines was developed by Lewis [10]. In 1981,
Barsky [1] generalized B-splines to Beta splines. These splines preserve the geo-
metric smoothness of the design curve while allowing the continuity conditions
on the spline functions at the knots to be varied by certain parameters, thus giving
greater flexibility. Later, in 1984, Bartels and Beatty [2] developed local bases for
Beta spline curves that are equivalent to Boehm’s [3] Gamma splines. Foley [7],
in 1987, constructed a B-spline-like basis for weighted splines; different weights
were built into the basis functions so that the control point curve was a C1 piece-
wise cubic with local control of interval tension.

In this work, a constructive approach has been adopted to build B-spline-like
basis for cubic spline curves with the same continuity constraints as those for inter-
polatory weighted v-splines. These are local basis functions with local support
which have the property of being positive everywhere. The design curve, con-
structed through these functions, possesses all the ideal geometric properties like
partition of unity, convex hull, and variation diminishing. This curve method pro-
vides not only a variety of very interesting shape control such as point and interval
tensions, but also, as a special case, recovers the cubic B-spline curve method.
In addition, it also provides B-spline-like design curves for weighted splines,
ν-splines and weighted ν-splines. The method for evaluating these splines is
suggested by a transformation to Bézier form.
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The approach adopted in the construction of local basis for the weighted
ν-splines is quite different from those adopted for different spline methods
in [1–8, 15]. The way for evaluating the weighted ν-splines representation of
a curve is suggested by a transformation to piecewise defined Bézier form. This
form will also expedite a proof of the variation diminishing property for the Bézier
representation.

This chapter is related the weighted ν-spline method [19, 22] explained in
Section 2.2. It studies, in Section 2.3, a B-spline-like local basis for the weighted
ν-spline. The design curve in Section 2.4 maintains the C1 continuity of the
weighted ν-splines. This description of freeform weighted ν-spline not only pro-
vides a variety of interesting shape control such as point and interval tensions
but also, as a special case, recovers the cubic B-spline curve method. In addition,
it also provides B-spline like design curves for weighted splines, ν-splines and
weighted ν-splines. The method has been extended for the construction of surfaces
in Section 2.5. Section 2.6 summarizes the chapter.

2.2 Some Spline Methods

This section gives a brief review of the cubic spline, weighted splines, ν-splines,
and weighted ν-splines. Detailed description of the weighted ν-splines is given in
Sections 2.3 and 2.4. Assume that we are given knot partition as t1 < t2 < . . . . <
tn , and set of control points F1, F2, . . . , Fn . Let us have the Followings:

Point tension factors: νi ≥ 0, i = 1, 2, . . . , n,

Interval weights: wi > 0, i = 1, 2, . . . , n.

}

, (2.1)

Consider the piecewise cubic function:

p(t) ≡ pi (t) = Fi (1 − θ)3 + 3θ(1 − θ)2Vi + 3θ2(1 − θ)Wi + Fi+1θ
3, (2.2)

where
θ = t − ti

hi
, hi = ti+1 − ti , (2.3)

and
Vi = Fi + hi Di

3
, Wi = Fi+1 − hi Di+1

3
. (2.4)

It is obvious to see that the piecewise cubic function (2.2) holds the following
interpolatory properties:

p(ti ) = Fi , p(ti+1) = Fi+1

p(1)(ti ) = Di , p(1)(ti+1) = Di+1

}

, (2.5)

where p(1) denotes first derivative with respect to t and Di denote derivative values
given at the knots ti . This leads the piecewise cubic (2.2) to the piecewise Hermite
interpolant p ∈ C1[t1, tn].
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2.2.1 Cubic Splines
The cubic spline interpolant is a C2 piecewise cubic function p(t) that minimizes

V ( f ) =
n−1∑

i=1

ti+1∫

ti

[
f ′′(t)

]2dt,

subject to the interpolation conditions f (ti ) = Fi for i = 1, 2, . . . , n and one of
the following end conditions:

• Type 1: First derivative end conditions,
• Type 2: Natural end conditions, or
• Type 3: Periodic end conditions.

Given Fi and Di for i = 1, 2, . . . , n, there exists a unique C2 piecewise cubic
function f (t) that satisfies f (ti ) = Fi and f ′(ti ) = Di for i = 1, 2, . . . , n.
The unknowns are the first derivative values, Di , i = 1, 2, . . . , n, and once they
are computed, the function f (t) can be easily evaluated using the standard piece-
wise cubic Hermite form explained in (2.2). Necessary and sufficient conditions
for the function f (t) to be the cubic spline interpolant are that its derivatives Di ’s
satisfy

ĉi−1 Di−1 + (2ĉi−1 + 2ĉi
)

Di + ĉi Di+1 = b̂i (Fi+1 − Fi ) + b̂i−1 (Fi − Fi−1) ,

for i = 1, 2, . . . , n, where ĉi = 1/hi , b̂i = 3ĉi/hi . The above system of equa-
tions provides (2.n −2) equations for n unknowns, D1, . . ., Dn , and the additional
equations come from the given end conditions. The equations for Type I first deriv-
ative end conditions are D1 = f ′(t1) and Dn = f ′(tn). For Type II natural end
conditions they are

2ĉ1 D1 + ĉ1 D2 = b̂1 (F2 − F1) ,

and
ĉn−1 Dn−1 + 2ĉn−1 Dn = b̂n−1(Fn − Fn−1).

For Type 3 periodic end conditions, they are
(
2ĉ1 + 2ĉn−1

)
D1 + ĉ1 D2 + ĉn−1 Dn−1 = b̂1(F2 − F1) + b̂n−1(Fn − Fn−1),

and D1 = Dn . The linear system of equations that occurs when Type 1 or 2
end conditions are used is tridiagonal and diagonally dominant; thus it can be
solved efficiently by using a standard tridiagonal system solver. Figure 2.1 is a
cubic spline curve for a data shown as bullets.

2.2.2 Weighted Splines
The weighted spline interpolant is a C1 piecewise cubic function p(t) that mini-
mizes

V ( f ) =
n−1∑

i=1

ωi

ti+1∫

ti

[
f ′′(t)

]2dt,
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FIGURE 2.1. The default weighted ν-spline with periodic end conditions.

subject to the interpolation conditions f (ti ) = Fi for i = 1, 2, . . . , n and one of
the Type 1, Type 2, and Type 3 end conditions.

The ωi ’s are termed as interval weights because they “tighten” the curve on the
i th interval in the same way that they do for the weighted splines in [14]. If and all
ωi = q, where q is some constant value, then the weighted spline equals the cubic
spline as in Section 2.2.1.

The approach taken in [21] uses piecewise cubic Hermite basis functions to rep-
resent the weighted splines. Given Fi and Di for i = 1, 2, . . . , n, there exists a
unique C1 piecewise cubic function f (t) that satisfies f (ti ) = Fi and f ′(ti ) =
Di for i = 1, 2, . . . , n. The unknowns are the first derivative values, Di , i =
1, 2, . . . , n, and once they are computed, the function f (t) can be easily evalu-
ated using the standard piecewise cubic Hermite form. Necessary and sufficient
conditions for the function p(t) to be the weighted spline interpolant are that its
derivatives Di satisfy

ci−1 Di−1 + (2ci−1 + 2ci ) Di + ci Di+1 = bi (Fi+1 − Fi ) + bi−1 (Fi − Fi−1) ,

for i = 1, 2, . . . , n, where ci = ωi/hi , bi = 3ci/hi . The above system of
equations provides (n − 2) equations for n unknowns, D1, . . . , Dn , and the addi-
tional equations come from the given end conditions. The equations for Type I first
derivative end conditions are D1 = f ′(t1) and Dn = f ′(tn). For Type II natural
end conditions they are

2c1 D1 + c1 D2 = b1 (F2 − F1) ,

and
cn−1 Dn−1 + 2cn−1 Dn = bn−1(Fn − Fn−1).

For Type 3 periodic end conditions, they are

2c1 + 2cn−1 D1 + c1 D2 + cn−1 Dn−1 = b1(F2 − F1) + bn−1(Fn − Fn−1),
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and D1 = Dn . The linear system of equations that occurs when Type 1 or 2 end
conditions are used is tridiagonal and diagonally dominant; thus it can be solved
efficiently by using a standard tridiagonal system solver.

2.2.3 Nu Splines
The ν-spline interpolant is a GC2 piecewise cubic function p(t) that minimizes

V ( f ) =
n∑

i=1

νi
[

f ′(ti )
]2

,

subject to the interpolation conditions f (ti ) = Fi for i = 1, 2, . . . , n and one of
the Type 1, Type 2, and Type 3 end conditions.

The νi are termed point tension factors because they “tighten” a parametric
curve at the i th point in the same way that they do for the ν-splines in [11, 12].
If νi = 0 ν-spline equals the cubic spline in [11, 12].

The approach taken in [11,12,19,21] uses piecewise cubic Hermite basis func-
tions to represent the ν-splines. Given Fi and Di for i = 1, 2, . . . , n, there exists a
unique GC2 piecewise cubic function f (t) that satisfies f (ti ) = Fi and f ′(ti ) =
Di for i = 1, 2, . . . , n. The unknowns are the first derivative values, Di , i =
1, 2, . . . , n, and once they are computed, the function f (t) can be easily evaluated
using the standard piecewise cubic Hermite form. Necessary and sufficient condi-
tions for the function p(t) to be the ν-spline interpolant are that its derivatives Di
satisfy

c̆i−1 Di−1 +
(

1
2
νi + 2c̆i−1 + 2c̆i

)
Di + c̆i Di+1 = b̆i

(
Fi+1 − Fi

)+ b̆i−1
(
Fi − Fi−1

)
,

for i = 1, 2, . . . , n, where c̆i = 1/hi , b̆i = 3c̆i/hi . The above system of equa-
tions provides (n − 2) equations for n unknowns, D1, . . . , Dn , and the additional
equations come from the given end conditions. The equations for Type I first deriv-
ative end conditions are D1 = f ′(t1) and Dn = f ′(tn). For Type II natural end
conditions they are

(
1
2
ν1 + 2c1

)
D1 + c1 D2 = b1 (F2 − F1) ,

and
cn−1 Dn−1 +

(
1
2
νn + 2cn−1

)
Dn = bn−1(Fn − Fn−1).

For Type 3 periodic end conditions, they are
(

1
2
ν1 + 1

2
νn + 2c1 + 2cn−1

)
D1 + c1 D2 + cn−1 Dn−1

= b1(F2 − F1) + bn−1(Fn − Fn−1),

and D1 = Dn . The linear system of equations that occurs when Type 1 or 2 end
conditions are used is tridiagonal and diagonally dominant; thus it can be solved
efficiently by using a standard tridiagonal system solver.
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2.2.4 Weighted Nu Splines
The weighted ν-spline interpolant is a C1 piecewise cubic function p(t) that min-
imizes

V ( f ) =
n−1∑

i=1

ωi

ti+1∫

ti

[
f ′′(t)

]2dt +
n∑

i=1

νi
[

f ′(ti )
]2

,

subject to the interpolation conditions f (ti ) = Fi for i = 1, 2, . . . . . . , n and one
of the Type 1, Type 2, Type 3 end conditions. This is the marriage of Weighted
splines and Nu splines which can be recovered as special cases discussed later in
this chapter.

The νi are termed point tension factors because they ‘tighten’ a parametric
curve at the i th point in the same way that they do for the ν-splines in [11, 12].
The wi are termed interval weights because they ‘tighten’ the curve on the i th
interval in the same way that they do for the weighted splines in [14]. If νi = 0
and all ωi = q , where q is some constant value, then the weighted ν-spline equals
the ν-spline in [11, 12] with tension factors νi/q. If all νi = 0, then it equals the
weighted spline given in [14].

The approach taken in [8] uses piecewise cubic Hermite basis functions to
represent the weighted ν-splines. Given Fi and Di for i = 1, 2, . . . , n, there
exists a unique C1 piecewise cubic function f (t) that satisfies f (ti ) = Fi and
f ′(ti ) = Di for i = 1, 2, . . . , n. The unknowns are the first derivative values, Di ,
i = 1, 2, . . . , n, and once they are computed, the function f (t) can be easily eval-
uated using the standard piecewise cubic Hermite form. Necessary and sufficient
conditions for the function p(t) to be the weighted ν-spline interpolant are that its
derivatives Di satisfy

ci−1 Di−1 +
(

1
2
νi + 2ci−1 + 2ci

)
Di + ci Di+1

= bi (Fi+1 − Fi ) + bi−1 (Fi − Fi−1) , (2.6)

for i = 1, 2, . . . , n. The above system of equations provides (n − 2) equations
for n unknowns, D1, . . . , Dn , and the additional equations come from the given
end conditions. The equations for Type I first derivative end conditions are D1 =
f ′(t1) and Dn = f ′(tn). For Type II natural end conditions they are

(
1
2
ν1 + 2c1

)
D1 + c1 D2 = b1 (F2 − F1) ,

and
cn−1 Dn−1 +

(
1
2
νn + 2cn−1

)
Dn = bn−1(Fn − Fn−1).

For Type 3 periodic end conditions, they are
(

1
2
ν1 + 1

2
νn + 2c1 + 2cn−1

)
D1 + c1 D2 + cn−1 Dn−1

= b1(F2 − F1) + bn−1(Fn − Fn−1),
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and D1 = Dn . The linear system of equations that occurs when Type 1 or 2 end
conditions are used is tridiagonal and diagonally dominant; thus it can be solved
efficiently by using a standard tridiagonal system solver.

The weighted ν-spline can be computed by solving for Di ’s. This can be done
by re-writing the system of equations in (2.10) as follows:

ci−1 Di−1 +
(νi

2
+ 2ci−1 + 2ci

)
Di + ci Di+1 = 3ci�i + 3ci−1�i−1, (2.7)

where
�i = (Fi+1 − Fi ) /hi .

for i = 2, . . . , n − 1. For given appropriate end conditions (Type 1, Type 2, or
Type 3), this system of equations is a tridiagonal linear system. This is also diag-
onally dominant for the following constraints on the shape parameters as in (2.1),
and hence has a unique solution for Di ’s. As far as the computation method is
concerned, it is much more economical to adopt the LU-decomposition method to
solve the tridiagonal system. Therefore, the above discussion can be concluded in
the following:

Theorem 2.1. For the shape parameter constraints (2.1), the spline solution of
the weighted v-spline exists and is unique.

Remark 2.1. Each component of the parametric weighted ν-spline is a C1 func-
tion in general, but it has second-order geometric continuity at ti if ωi−1 = ωi and
the tangent vector at ti is non zero and it is C2 at ti if ωi−1 = ωi and νi = 0.

2.2.5 Demonstration
Figure 2.1 is the parametric weighted ν-spline interpolant to the points denoted by
circles using periodic end conditions. In Figure 2.2, interval weight,ωi , of 30 is
used in the base interval, while point tension factors, νi of 10 are used on the four
vertices defining the “neck.” The rest of the parameters are taken as ωi = 1 and
νi = 0.

2.3 Freeform Weighted Nu Spline

This section is devoted to constructing the freeform weighted Nu spline which has
inherent properties of B-spline curves. This formulation is possible through the
construction of local support basis Bi ’s to compute the cubic weighted ν-spline
p(t) satisfying the following constraints:

⎡

⎣
p(ti+)

p(1)(ti+)

p(2)(ti+)

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 νi

ωi

ωi−1
ωi

⎤

⎦

⎡

⎣
p(ti−)

p(1)(ti−)

p(2)(ti−)

⎤

⎦ . (2.8)
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FIGURE 2.2. The weighted ν-spline with periodic end conditions using ωi = 30 on the
base interval, ωi = 1 otherwise, νi = 10 on the four vertices defining the “neck,” and
νi = 0 otherwise.

2.3.1 Local Support Basis
For the purpose of the analysis, let additional knots be introduced outside the knot
partition t1 < t2 < . . . < tn of the interval [t1, tn], defined by:

t−2 < t−1 < t0 < t1 and tn < tn+1 < tn+2 < tn+3. (2.9)

Let
ai = 1/ci , (2.10)

and φi be cubic weighted ν-spline:

φi (t) =
{

0, t ≤ ti−2,

1, t ≥ ti+1.
(2.11)

Imposing weighted ν-spline constraints (2.8), we have:

φi (ti−1) = hi−2

3
φ

(1)
i (ti−1),

φi (ti ) = 1 − hi

3
φ

(1)
i (ti ),

φ
(1)
i (ti−1) = Ai

Ci
,

and
φ

(1)
i (ti ) = Bi

Ci
,
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where, if di = 1
2 ai ai−1νi + ai−1 + ai , then

Ai = 3ai−2

hi−1
di ,

Bi = 3ai

hi−1
di−1,

Ci = di di−1 + ai

hi−1
(hi−1 + hi )di−1 + ai−2

hi−1
(hi−1 + hi−2)di .

Let

Di = hi−1di di−1 + ai (hi−1 + hi )di−1 + ai−2(hi−1 + hi−2)di ,

µi = φi+1(ti ), λi = 1 − φi (ti ),

µ̂i = φ
(1)
i+1(ti ), λ̂i = φ

(1)
i (ti ),

Then

λ̂i = 3ai di−1

Di
, µ̂i = 3ai−1di+1

Di+1
,

µi = hi−1

3
µ̂i , λi = hi

3
λ̂i ,

and hence
0 ≤ µi ≤ 1, 0 ≤ λi ≤ 1 and 0 ≤ µi + λi ≤ 1.

Now define
Bi (t) = φi (t) − φi+1(t).

Then Bi has the local support (ti−2, ti+2) and an explicit representation of B j
on any interval (ti , ti+1) (in particular, for i = j − 2, j − 1, j, j + 1) can be
calculated as:

B j (t) = (1 − θ)3 B j (ti ) + θ(1 − θ)2(3B j (ti )hi B(1)
j (ti ))

+ θ2(1 − θ)(3B j (ti+1) − hi B(1)
j (ti+1)) + θ3 B j (ti+1), (2.12)

where
B j (ti ) = B(1)

j (ti ) = 0 for i 	= j − 1, j, j + 1,

and
B j (t j−1) = µ j−1, B(1)

j (t j−1) = µ̂ j−1,

B j (t j ) = 1 − λ j − µ j , B(1)
j (t j ) = λ̂ j − µ̂ j ,

B j (t j+1) = λ j+1, B(1)
j (t j+1) = −λ̂ j+1.

⎫
⎪⎪⎬

⎪⎪⎭
(2.13)

Careful examination of the Bézier vertices of B j (t) in (2.12) shows these to be
non-negative for νi , ωi satisfying (2.7) and thus B j (t) ≥ 0, ∀t . This leads to the
following:
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Proposition 2.1. The local support basis functions (2.12) are such that the foll-
owing properties hold:

(i) (Local support) B j (t) = 0 for t /∈ (t j−2, t j+2),

(ii) (Partition of unity)
n+1∑

j=−1
B j (t) = 1 for t ∈ [t1, tn],

(iii) (Positivity) B j (t) ≥ 0 for all t .

2.3.2 Design Curve
Now, we need a convenient method to compute the curve representation. It is
desired to apply the above developed local basis functions to develop a freeform
weighted ν-spline curve as follows:

P(t) =
n+1∑

j=−1

B j (t)Pj , t ∈ [t1, tn], (2.14)

where Pj ∈ RN , j = 0, 1, . . . , n + 1, define the control points of the representa-
tion. By the local support property,

P(t) =
i+2∑

j=i−1

B j (t)Pj , t ∈ [ti , ti+1), i = 0, . . . , n − 1.

Substitution of (2.12), t ∈ [ti , ti+1), then gives the piecewise defined Bézier rep-
resentation

P(t) ≡ Pi (t) = Fi (1 − θ)3 + 3θ(1 − θ)2Vi + 3θ2(1 − θ)Wi + Fi+1θ
3, (2.15)

where
Fi = λi Pi−1 + (1 − λi − µi )Pi + µi Pi+1,
Vi = (1 − αi )Pi + αi Pi+1,
Wi = βi Pi + (1 − βi )Pi+1,

⎫
⎬

⎭
(2.16)

with

αi = µi + hi µ̂i/3 = µ̂i

3
(hi−1 + hi ),

βi = λi+1 + hi
∧
λi = λ̂i+1

3
(hi + hi+1).

This transformation to Bézier form is very convenient for computational purposes
and also leads to the following:

Proposition 2.2. (Variation Diminishing Property) The weighted ν-spline curve
P(t), t ∈ [t0,tn], defined by (2.14), crosses any (hyper) plane of dimension N − 1
no more times than it crosses the “control polygon” joining the control points
P−1, P0, . . . , Pn+1.
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Proof. Following the arguments of positivity in the previous proposition, it is
straightforward that 0 ≤ αi ≤ 1, 0 ≤ βi ≤ 1, and 0 ≤ αi + βi ≤ 1. Thus, Vi and
Wi lie on the line segment joining Pi and Pi+1, where Vi is before Wi . It can also
be simply noted that

Fi = (1 − γi )Wi−1 + γi Vi , (2.17)

where
0 < γi = hi−1

hi−1 + hi
< 1.

Thus, the control polygon of the piecewise defined Bézier representation is
obtained by corner cutting of the weighted ν-spline control polygon. Since the
piecewise defined Bézier representation is variation diminishing, it follows that
weighted ν-spline representation is variation diminishing.

2.3.3 Shape Control
The shape parameters, defined in (2.7), can be used to control the local or
global shape of the design curve. To analyze such behaviors, the explicit form
on (2.ti , ti+1) of the weighted ν-spline design curve (2.14) can be expressed as:

P(t) = li (t) + ei (t), (2.18)

where
li (t) = (1 − θ)Fi + θ Fi+1, (2.19)

and

ei (t) = θ(1 − θ)
{[

(Fi+1 − Fi ) − hi P(1)(ti )
]
(θ − 1)

+
[
(Fi+1 − Fi ) − hi P(1)(ti+1)

]
θ
}

. (2.20)

Proposition 2.3. Let ωi = ω ≥ 1, and νi = 0,∀i are all bounded then the
weighted ν-spline design curve is straightway the standard cubic spline.

Proof. It follows from the last constraint of relation (2.8).

Proposition 2.4. (Global Tension) Let ωi ≥ 1, ∀i , be bounded and νi ≥ ν then
the weighted ν-spline curve (2.14) converges uniformly to the control polygon
P0, . . ., Pn as ν → ∞.

Proof. Let νi = ν, ∀i then from (2.1)

lim
ν→∞ P(1)(ti ) = 0. (2.21)

Moreover
lim

ν→∞ µ̂i = 0 = lim
ν→∞ λ̂i , ∀i.
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This implies the following:

lim
ν→∞ Fi = Pi , ∀i. (2.22)

More generally, for νi ≥ ν ≥ 0, it can be shown that

max
i

|λ̂i | ≤ r(ν),

and
max

i
|µ̂i | ≤ s(ν),

where
lim

ν→∞ r(ν) = 0 = lim
ν→∞ s(ν),

and again (2.21) and (2.22) hold. Hence the result.

Proposition 2.5. [Local Tension] Consider an interval [tk, tk+1] for a fixed k.
Then on [tk, tk+1] weighted ν-spline curve converges uniformly to a line segment
of the line Pk Pk+1 as wk → ∞ where ωk−1 and νk are bounded.

Proof. Careful examination shows

lim
ω→∞ µk = hk−1

(3hk + hk−1 + hk+1)
= α̂k(say)

lim
ω→∞ µk+1 = 0

lim
ω→∞ λk = 0

lim
ω→∞ λk+1 = hk+1

(3hk + hk−1 + hk+1)
= β̂k(say)

This implies the following:

lim
ω→∞ Fk = (1 − α̂k

)
Pk + α̂k Pk+1 = F̂k(say)

and
lim

ω→∞ Fk+1 = β̂k Pk +
(

1 − β̂k

)
Pk+1 = F̂k+1(say)

Obviously F̂k and F̂k+1 lie on Pk Pk+1 and F̂k is before F̂k+1 as α̂k < (1 − β̂k).
Also

lim
ω→∞(Fk+1−Fk)= lim

ω→∞ hk P(1)(tk)= lim
ω→∞ hk P(1)(tk+1)= 3hk(Pk+1 − Pk)

(3hk + hk−1 + hk+1)

Hence from (2.18), (2.19), (2.20) if P(t) = Pk(t) for t ∈ (tk, tk+1), then

lim
ω→∞ Pk (t) = (1 − θ) F̂k + θ F̂k .
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Proposition 2.6. (Local Tension) Consider an interval as in Proposition 5. Then
on [tk, tk+1], the weighted ν-spline converges uniformly to the linear interpolant
li (t) as both νk , νk+1→ ∝, where ωk−1, ωk , ωk+1 are bounded.

Proof. It can be noted that

lim µk = lim µk+1 = 0,

lim λk = lim λk+1 = 0,

and
lim P(1) (tk) = lim P(1) (tk+1) = 0.

This gives the desired result.

2.3.4 Demonstration
The tension behavior of the weighted ν-spline is illustrated by the following sim-
ple examples for data set in R2. Unless otherwise stated, in all the figures, the
parameter νi will be assumed as zero ∀i and the parameters ωi as 1 for all i .

Figure 2.3 is the default curve, which is a cubic spline for νi = 0, and ωi = 1,
for all i . The control polygon, together with the control points, is also shown in
the figure. Figure 2.4 shows the effect of a progressive increase in the interval
tension in the base of the figure. The top, middle, and bottom curves have been
demonstrated for ω = 1, 10, and 100, respectively. The effect of the high-tension
parameters is clearly seen in the corresponding interval in the base of the figure.
Figure 2.5 shows the effect of a progressive increase in point tension behavior
locally at two opposite points of the figure. The top, middle, and bottom curves
have been demonstrated for ν = 0, 10, and 100, respectively. The effect of the
high-tension parameters is clearly seen at the corresponding points in the figure.

FIGURE 2.3. The default weighted Nu spline.
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FIGURE 2.4. The weighted Nu spline with interval tension at the base with ω values as 1
(left curve), 10 (middle curve), 100 (right curve).

FIGURE 2.5. The weighted Nu spline with corner tension at two opposite points with ν
values as 0 (left curve), 10 (middle curve), 100 (right curve).

FIGURE 2.6. The weighted Nu spline with global tension ν = 1 (top curve), ν = 5 (middle
curve), ν = 100 (bottom curve).

Figures 2.6 illustrates the effect of progressively increasing the values of the
point tension parameters νi ’s = 0, 5, and 100, for the top, middle, and bottom
curves, respectively, at all the points of the figure. This is the global tension effect
due to progressive increase.

Figure 2.7 demonstrates an important observation about the negative values of
the shape parameters. The global values of the interval shape parameters ω’s will
not make any effect to the picture. However, the local values do influence the
picture. The curve bulges inside for negative values ω = 0,−3,−4,−5,−25,
and −100. It can be noted (row-wise from left to right) that lower negative values
make the curve bulge more inside, but higher negative values again start making
the curve tensed in the interval.

Behavior of the negative ν values can be seen in Figure 2.8. It illustrates the
effect of progressive negative increase in the values of the point tension parameters
νi ’s = 0,−1,−5,−25,−100, and −1000. It can be seen (row-wise from left to
right) that Lower negative values make the curve bulge inside so much so the
curve starts looping with the negative increase. However, it again starts getting
tensed after attaining certain values. Ultimately, higher negative values make the
curve tensed to converge to the control polygon.
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FIGURE 2.7. The weighted Nu spline curves (row vise from left to right) with negative
global tension ω values 0, −3, −4, −5, −25, 100.

FIGURE 2.8. The weighted Nu spline curves (row vise from left to right) with negative
global tension ν values 0, −1, −5, −25, 100, and 1000.
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2.3.5 Advantages and Features
The method has various advantages and features as follows:

• It enjoys the good features of cubic splines.
• It enjoys all the standard geometric properties of B-splines.
• The method is geometrically smooth.
• It recovers the cubic B-spline method as a special case.
• It recovers the weighted spline method as a special case.
• It recovers the Nu-spline method as a special case.
• It possesses interested shape design features.
• It has two families of shape parameters working in such a way that one family

of parameters is associated with intervals and the other with points. These para-
meters provide a variety of shape controls such as point and interval tension.

• Negative weights can also be utilized for shape design.
• It is computationally economical because it consumes the cubic function only.
• The method of evaluation is suggested by a transformation to Bézier form,

which is computable by any well-known recursive method too.
• In addition to direct manipulation, the interpolation method can be computed

through B-spline-like formulation too. This point will be discussed in detail
somewhere else later.

• The curve method is extendable to surfaces. The direct approach using a tensor
product is the simplest one.

2.4 Surfaces

The extension of the curve scheme, to tensor product surface representations:

P(t̃, t) =
m+1∑

i=−1

n+1∑

j=−1

Pi, j B̃i (t̃)B j (t),

where t̃−2 ≤ t̃ ≤ t̃m+3, t−2 ≤ t ≤ tn+3, is immediately apparent. This surface
presents a bicubic weighted ν-spline surface with shape parameters as:

ṽi ≥ 0, i = 1, . . . , m, w̃i > 0, i = 1, . . . , m − 1,

ν j ≥ 0, j = 1, . . . , n, ω j > 0, j = 1, . . . , n − 1.

Here
Pi, j ∈ R3, i = −1, . . . , m + 1, j = −1, . . . , n + 1.

are the data points and B̃i , i = −1, . . . , m + 1 and B j , j = −1, . . . , n + 1 are
the local support bases functions for the weighted ν-spline in t̃ and t directions,
respectively. However, this representation exhibits a problem common to all tensor
product descriptions in that the shape control parameters now affect a complete
row or column of the tensor product array.
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Nielson [12] solves this problem for his cubic ν-spline representation by
constructing a Boolean sum, spline-blended, rectangular network of parametric
ν-spline curves. Another possibility is to allow the shape parameters to be variable
in the orthogonal direction to, for example, the local support basis functions of the
tensor product form.

We propose a tensor product like the approach in [16,17], but actually it is not a
tensor product. Instead of step functions, the tension weights are introduced as C2

continuous cubic B-splines in the description of the tensor product. This produces
local control in the construction of surfaces in an independent way. The details
of the proposed method are out of the scope of this paper and will be discussed
elsewhere.

2.5 Summary

A freeform C1 weighted Nu spline curve design has been developed through
the construction of local support B-spline-like basis functions. This cubic spline
method has been developed with a view to its application in computer graphics,
geometric modeling, and CAGD. It is quite reasonable to construct a freeform
cubic spline method, which involves two families of shape parameters in exactly
a similar way as in interpolatory weighted ν-spline. These parameters provide a
variety of local and global shape controls such as interval and point shape effects.
The visual smoothness of the proposed method is also C1, which is same as
the smoothness of interpolatory weighted ν-spline. The freeform C1 weighted
Nu-spline method can be applied to tensor product surfaces, but unfortunately,
in the context of interactive surface design, this tensor product surface is not that
useful because any one of the tension parameters controls an entire corresponding
interval strip of the surface. Thus, as an application of C1 spline for the surfaces, a
method similar to Nielson’s [12] spline blended methods may be attempted. This
will produce local shape control, which is quite useful regarding the computer
graphics and geometric modeling applications.

2.6 Exercises

1. Write a program to implement the curve design method in Section 2.2.
2. Write a program to implement the curve design method in Section 2.3.
3. Check the difference of shape effects in your programs of Exercise 2.6.1 and

2.6.2 when the schemes are implemented in scalar form.
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3
Rational Cubic Spline with Shape
Control

Abstract. Interactive curve design is a basic need for CAD/CAM, computer graphics,
vision, imaging and various other disciplines [1–28]. Having a robust, visually pleas-
ant, well controlled, and effective scheme may be a useful solution to many problems in
practice. A rational spline with some shape parameters may be a good choice in this regard.
This chapter has been devoted to a C2 rational spline scheme having interesting features.
It is also an alternative to various other schemes, in the literature, like weighted spline,
ν – spline, weighted Nu spline, and γ – spline, and so on. In addition to the interpolatory
version, the spline is also presentable in B-spline-like form to produce freeform curves.

3.1 Introduction

A rational cubic spline with tension was described and analyzed by Gregory and
Sarfraz [23]. It provides a C2 computationally simpler alternative to the exponen-
tial spline-under-tension of Schweikert [24], Cline [25] and Preuss [26] as well as
an alternative to C1 and GC2 spline methods such as the weighted ν – spline of
Foley [8] and γ – spline of Boehm [3], and so on. Regarding shape characteristics,
it has a shape control parameter associated with each interval which can be used
for flatten or tighten the curve both locally and globally.

This chapter presents a description and analysis of a rational cubic spline that
has two shape parameters associated with each interval. The spline can be used in
computer graphics, CAGD, and CAD/CAM to represent the parametric curves in
interpolatory as well approximation (freeform) form. The rational spline not only
recovers the rational cubic spline with tension of Gregory and Sarfraz [23] but
also provides a C2 alternative to most of the existing C1 and GC2 spline methods
such as the weighted splines of Foley [7], ν – spline of Nielson [11,12], weighted
ν – splines of Foley [8], γ – spline of Boehm [3], rational geometric splines of
Boehm [27], and so on.

The shape parameters of the rational spline can be utilized to achieve a variety
of shape controls such as biased, point and interval tensions. Since the spline is
defined on a nonuniform knot partition, the partition itself provides additional

41
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degrees of freedom on the curve. However, the parametrization is normally
expected to be defined on a uniform known partition, or by cumulative chord
length, or by some other appropriate means.

The rational spline is based on a rational cubic Hermite interpolant which is
introduced in Section 3.2. together with some preliminary analysis. Section 3.3
describes the rational spline and analyses of its behavior with respect to one shape
parameter in each interval while the generalization to two shape parameters is
discussed in Section 3.4. Section 3.5 consists of some illustrative examples about
the interpolation spline. The survey of freeform curves is made in Section 3.6
and B-spline-like bases are constructed in Section 3.8. Freeform design curve for-
mulation is made in Section 3.9, whereas Section 3.10 explains the behavior of
shape parameters. Freeform curve scheme has been demonstrated in Section 3.11.
A brief description of surfaces has been made in Sections 3.12 and 3.13.

3.2 C1 Piecewise Rational Cubic Hermite Interpolant

A piecewise rational cubic Hermite parametric function p ∈ C1 [t0, tn], with para-
meters vi , wi , i = 0, . . . , n − 1, is defined for t ∈ [ti , ti+1

]
, i = 0, . . . , n − 1, by

p(t) = pi (ti ; vi , wi )

= (1 − θ)3 Fi + θ (1 − θ)2 (vi Fi + hi Di ) + θ2 (1 − θ) (wi Fi+1 − hi Di+1) + θ3 Fi+1

(1 − θ)3 + vi θ (1 − θ)2 + wiθ2 (1 − θ) + θ3

(3.1)

where the notations Fi , Di , ti , hi , θ are as mentioned in Section 1.3 and vi , wi ≥0.
The function p (t)—see Figure 3.1—has the Hermite interpolation properties

that
p(ti ) = Fi and p(1)(ti ) = Di , i = 0, . . . , n. (3.2)

The vi and wi , i = 0, . . . , n − 1, will be used as shape parameters to control and
fine tune the shape of the curve. The case vi = wi = 3, i = 0, . . . , n − 1 is that
of cubic Hermite interpolation and the restriction vi , wi ≥ 0 ensures a positive
denominator in Equation (3.1).

For vi , wi 	= 0, Equation (3.1) can be written in the form:

pi (ti ; vi , wi ) = R0(θ; vi , wi )Fi + R1 (θ; vi , wi ) Vi + R2 (θ; vi , wi ) Wi

+R3 (θ; vi , wi ) Fi+1, (3.3)

where
vi = Fi + hi Di/vi , Wi = Fi+1 − hi Di+1/wi , (3.4)

and R j (θ; vi , wi ), j = 0, 1, 2, 3, are appropriately defined rational functions with

3∑

j=0

R j (θ; vi , wi ) = 1. (3.5)
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Vi

Wi

Fi+1

Di+1

Di

Fi

FIGURE 3.1. The rational cubic segment in R2.

Moreover, these functions are rational Bernstein-Bézier weight functions that are
non-negative for vi , wi > 0. Thus, in RN , N > 1 and for vi , wi > 0, we have:

Proposition 3.1. (Convex hull property) The curve segment pi lies in the convex
hull of the control points {Fi , Vi , Wi , Fi+1}.

We now consider the variation diminishing property of the rational cubic and
for this we require some preliminary analysis. Let

p (θ) =
3∑

i=0

ai Ai

(
3
i

)
θ i (1 − θ)3−i ,

and

q (θ) =
3∑

i=0

ai

(
3
i

)
θ i (1 − θ)3−i

be scalar curves with ai > 0,∀i . Since p (θ) is a Bézier curve and since ai > 0,
we have

V (p) ≤ V (a0 A0, . . . , a3 A3) = V (A0, . . . , A3),

where V(.) denotes the number of sign changes of a function or sequence on [0, 1].
Also, since q(θ) > 0, we have

V
(

p
q

)
= V (p) ≤ V (A0, . . . , A3),

Let p (θ) now be considered as planar curve, say, p (θ) = (p1 (θ) , p2 (θ)) where
Ai = (xi , yi ) ∈ R2 and let L ≡ ax + by + c = 0 be any line. Then the number
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of times the line L crosses the rational cubic curve p(θ)/q(θ) is the same as it
crosses the cubic Bézier curve p(θ), q(θ) > 0. This number is

V (ap1 + bp2 + c) = V
(

a
∑

ai xi

(
3
i

)
θ i (1 − θ)3−i

+ b
∑

ai yi

(
3
i

)
θ i (1 − θ)3−i + c

)

= V
(

a
∑

xi

(
3
i

)
θ i (1 − θ)3−i +b

∑
yi

(
3
i

)
θ i (1−θ)3−i

+ c
∑(

3
i

)
θ i (1 − θ)3−i

)

= V
(∑

(axi + byi + c)
(

3
i

)
θ i (1 − θ)3−i

)

= the number of times the line L crosses the polygon A0, . . . , A3.

These arguments can be extended to rational curve of any degree in RN with any
hyper plane of dimension N − 1. Thus, we have:

Proposition 3.2. (Variation diminishing property) The curve segment pi crosses
any (hyper) plane of dimension N − 1 no more times than it crosses the control
polygon joining Fi , Vi , Wi , Fi+1.

Remark 3.3. In the scalar case when vi , wi ,= ri , the convex hull
(Proposition 3.1) and variation diminishing (Proposition 3.2) properties apply
to the curve segment (t, pi (t; ri , ri )) ∈ R2, t ∈ (ti , ti+1) with control points:

{(ti , Fi ) , (ti + hi/ri , Vi ) , (ti+1 − hi/ri , Wi ) , (ti+1, Fi+1)} . (3.6)

This is a consequence of the identity

t ≡ R0(θ; ri )ti + R1(θ; ri )(ti + hi/ri ) + R2(θ; ri )(ti+1 − hi/ri ) + R3(θ; ri )ti+1,
(3.7)

where
RJ (θ; ri ) ≡ R j (θ; ri , ri ), j = 0, . . . , 3. (3.8)

In fact, (t, p(t)) can be considered as an application of the interpolation scheme
in R2 to the values (ti , Fi ) ∈ R2 and derivatives (1, Di ) ∈ R2, i = 0, . . . , n.

3.3 One-Parameter Rational Cubic Spline

For simplicity, in this section, let us assume vi = wi = ri say. The rational cubic
in Equation (3.1) can then be expressed in the form:

pi (t; ri , ri ) = li (t) + ei (t; ri ), (3.9)
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where

li (t) = (1 − θ)Fi + θ Fi+1. (3.10)

ei (t; ri ) = hiθ(1 − θ) {(�i − Di )(θ − 1) + (�i − Di+1)θ}
1 + (ri − 3)θ(1 − θ)

. (3.11)

This immediately leads to:

Proposition 3.4. (Interval tension property) For given fixed (or bounded)
Di , Di+1 the rational cubic Hermite interpolant in Equation (3.10) converges
uniformly to the linear interplant in Equation (3.11) on

[
ti , ti+1

]
as ri → ∞ i.e.

lim
ri →∞ ||ei || = lim

ri →∞ ||pi − li || = 0. (3.12)

Moreover, the component functions of ei tend to zero monotonically, both
uniformly and pointwise on

[
ti , ti+1

]
.

Remark 3.5. The interval tension property can also be observed from the behav-
ior of the control points Vi , Wi defined by Equation (3.4), and hence of the
Bernstein-Bézier convex hull, as ri → ∞.

Now we construct a C2 rational spline interpolant. This requires knowledge of
the second derivative which, after some simplifications, is given by:

p(2)
i (t; ri , ri ) = 2

{
αi (1 − θ)3 + βiθ(1 − θ)2 + γiθ

2(1 − θ) + δiθ
3}

hi {1 + (ri − 3)θ(1 − θ)}3 , (3.13a)

where
αi = ri (�i − Di ) − Di+1 + Di ,
βi = 3(�i − Di ),
γi = 3(Di+1 − �i ),
δi = ri (Di+1 − �i ) − Di+1 − Di ).

⎫
⎪⎪⎬

⎪⎪⎭
(3.13b)

We now follow the familiar procedure of allowing the derivative parameters
Di , i = 0, . . . , n to be degrees of freedom that are constrained by the imposition
of C2 continuity conditions:

p(2)(ti+) = p(2) (ti−) , i = 1, . . . , n − 1. (3.14)

These C2 conditions give, form (3.13a) and (3.13b), the linear system of consis-
tency equations as follows:

hi Di−1 + {hi (ri−1 − 1) + hi−1(ri − 1)} Di + hi−1 Di+1

= hiri−1�i−1 + hi−1ri�i , i = 1, . . . , n − 1, (3.15)

with appropriate end conditions D0 and Dn , Equations (3.15) is a tridiagonal linear
system in the unknowns Di , i = 1, . . . , n − 1. Assume that

ri ≥ r > 2, (3.16)
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then the tridiagonal linear system, in Equations (3.15), is strictly diagonally dom-
inant and hence has a unique solution that can be calculated easily by use of the
tridiagonal LU decompositon algorithm. Thus a rational cubic spline interpolant
can be constructed with tension parameters ri , i = 0, . . . , n −1, where the special
case ri = 3, i = 0, . . . , n − 1 corresponds to cubic spline interpolation. We now
examine the behavior of the rational spline interpolant with respect to the tension
parameters ri in the following propositions.

Proposition 3.6. (Global tension property) Let l ∈ C0 [t0, tn] denote the piece-
wise linear interpolant defined for t ∈ [

ti , ti+1
]

by l(t) = li (t); see Equation
(3.11). Suppose that ri ≥ r > 2, i = 0, . . . , n − 1, as in Equation (3.16). Then the
rational spline interpolant converges uniformly to l as r → ∞, i.e., on [t0, tn],

lim
r→∞ ||p − l|| = 0. (3.17)

Proof. Suppose ri = r, i = 0, . . . , n − 1, then from Equations (3.15), it follows
that

lim
r→∞ Di = (hi�i−1 + hi−1�i )

hi + hi−1
, i = 1, . . . , n − 1. (3.18)

More generally, for ri satisfying (3.16), it can be shown that

max
1≤i≤n−1

||Di ||∞ ≤ max {||�||∞r/(r − 2), ||D0||, ||Dn||} , (3.19)

where
||�|| = max

1≤i≤n−1
||�i ||∞. (3.20)

Hence the solution Di , i = 1, . . . , n − 1 of the consistency Equations (3.15)
is bounded with respect to r . Now, from Equation (3.12), the tension property
in Equation (3.12) of Proposition 3.4 can clearly be extended to the case of
bounded r . Thus applying Equation (3.12) on each interval gives the desired result
in Equation (3.17). �

Proposition 3.7. (Local tension property) Let ri ≥ r > 2,∀i and consider an
interval

[
tk, tk+1

]
for a fixed k ∈ {0, . . . , n − 1}. Then, on

[
tk, tk+1

]
the rational

spline interpolant converges uniformly to the line segment lk as rk → ∞ i.e.

lim
rk→∞ ‖pk − lk‖ = 0. (3.21)

Proof. The boundedness property in Equation (3.19) holds as in Proposition 3.6
(where we can assume the additional constraints rk ≥ r > 2 to the hypotheses
currently being imposed. Thus, Equation (3.12) applies for the case i = k. �

Remark 3.8. In Proposition 3.7, there is no assumption that the ri , i 	= k are con-
stant with respect to the limit process. However, in the case of constant ri , i 	= k,
an analysis of the linear system in Equation (3.15) shows that

lim
rk→∞ ||Dk − �k ||∞ = lim

rk→∞ ||Dk+1 − �k ||∞ = 0. (3.22)
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This property reinforces the rate of convergence to zero of ek = pk−lk in Equation
(3.21), as can be seen from Equation (3.12) with i = k. The following proposition
shows that the influence of rk in this case has an exponential decay away from the
interval

[
tk − tk+1

]
.

Proposition 3.9. (Exponential decay property) Let Di , i = 1, . . . , n − 1, denote
the solution of the consistency equations with tension parameters rk ≥ r > 2, i =
0, . . . , n − 1, and let D̂i , i = 1, . . . , n − 1, denote the solution with parameters
r̂i ≥ r > 2, i = 0, . . . , n − 1, where r̂i = ri for i 	= k. Consider a knot ti , i ∈
{0, . . . , n − 1}, where i = k − l or k + 1 + l, and l is a positive integer. Then

||Di − D̂i ||∞ ≤ 4γ l(1 + 2γ )

1 − γ
||�||∞, (3.23a)

where ||�||∞ is the constant defined in Equation (3.20) and

γ = 1/(r − 1) < 1.

(Thus, for example, if r = 3 then γ = 1/2.)

Proof. To prove this result, let the consistency equations (3.15) be divided by the
coefficient of Di to give the matrix form

(l + F) D = B

where DT = D1, . . . , Dn−1 and the given end conditions D0 and Dn have been
transferred to the right-hand side B. Then F is a tridiagonal matrix such that

||F ||∞ ≤ 1
r − 1

= γ

Also it can be shown that
||B||∞ ≤ 2||�||∞

Similarly, for the perturbed system

(1 + F̂)D̂ = B̂

where r̂k = rk + σ , we have

||F ||∞ ≤ 1
r − 1

= γ and ||B||∞ ≤ 2||�||∞
Now

D̂ − D = ((1 + F̂)−1 − (1 + F)−1)B + (1 + F̂)−1[B̂ − B]
and we consider each of the terms of the right-hand side separately.
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Firstly, F̂ and F are tridiagonal matrices that agree in rows l ≤ i ≤ k − 1 and
k +2 ≤ i ≤ n −1 (i.e., only the kth and k +1st rows are changed by a perturbation
of rk .) Thus, F̂l and Fl agree in rows l ≤ i ≤ k − 1 and k + 1 + l ≤ i ≤ n − 1.
Hence

ς = ((1 + F̂)−1 − (1 + F)−1)B =
∞∑

ϑ=1

(−1)ϑ [F̂ϑ − Fϑ ]B

is such that the i th component, for i = k − l or i = k + l + 1 satisfies

ςi ≤
∞∑

ϑ=l+1

(||F̂ ||ϑ − ||F ||ϑ)||B|| ≤ γ l+1

1 − γ
4||�||∞ (3.23b)

Secondly, we consider
E = (1 + F̂)−1[B̂ − B]

and apply an analysis that follows that of [Demko’77] (see his Proposition 3.1).
Since F̂ is tridiagonal, has bandwidth 2ϑ + 1 (i.e., the (i , j) elements are zero for
|i − j | > ϑ). Hence for |i − j | = 1, the (i , j) element of the series expansion
(1 + F̂)−1 =∑ (−1)ϑ F̂ϑ is not influenced by F̂ϑ for ϑ < l. Thus:

|| f̂i, j || ≤
∞∑

ϑ=l+1

||F̂ ||ϑ ≤ γ l

1 − γ
f or |i − j | = l

Finally, and B agree in rows l ≤ i ≤ k − 1 and k + 1 ≤ i ≤ n − 1. Hence the i th
component of E satisfies

|ei | = | fi,k(b̂k − bk) + fi,k+1(b̂k+1 − bk+1)| (3.23c)

≤
⎧
⎨

⎩

γ l

1−γ (|b̂k | + |bk |) + γ l+1

1−γ (|b̂k+1| + |bk+1)

γ l+1

1−γ (|b̂k | + |bk |) + γ l+1

1−γ (|b̂k+1| + |bk+1)

≤
{

γ l (1+γ )
1−γ 4 ‖�‖∞

Combination (3.23b) and (3.23c) then gives the desired result (3.23a). �

Remark 3.10. We note that

(i) the rational spline exists uniquely for ri ≥ r > 2
(ii) the case ri = 3, i = 0, . . . , n − 1 is that of the cubic spline and

(iii) increasing ri tightens the curve both locally and globally (c.f. Propostions 3.6
and 3.7. For the range 2 < ri < 3 the rational spline produces a more flexible,
i.e. looser, curve than the cubic spline curve, both locally and globally.
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3.4 Two-Parameter Rational Cubic Spline

In this section we generalize the curve representation of Section 3.3 and consider
the Hermite interpolant in Equation (3.1) of Section 3.2 for rational spline anlaysis
and representation. We assume the shape parameters vi , wi > 0 as

vi = biwi , i = 0, . . . , n − 1, (3.24)

where 0 < bi < ∞.

Remark 3.11. For given fixed (or bounded) Di and Di+1, the following observa-
tions can be made immediately from the Bernstein-Bézier representation (Equa-
tion (3.3)) and the control points Vi , Wi defined by Equation (3.4), that:

(i) if wi → ∞, then the rational cubic Hermite interpolant (3.1) converges to the
rational linear interpolant Li (t, bi ) where

Li (t, bi ) = (1 − θ)bi Fi + θ Fi+1

(1 − θ)bi + θ
, (3.25)

(ii) if bi > 1, i.e., vi exceeds wi , then the curve is pulled towards Fi in the interval[
ti , ti+1

]
.

(iii) if bi = 1, i.e., vi = wi then increase in wi pulls the curve toward Fi and Fi+1
the interval

[
ti , ti+1

]
(see Proposition 4).

(iv) if 0 < bi < 1, i.e., wi exceeds vi then the curve is pulled toward Fi+1 in the
interval

[
ti , ti+1

]
.

Now we proceed to construct a C2 rational spline interpolant. For this we are in
of the second derivative values of Equation (3.1) at the knots. After some simpli-
fications, we have

p(2)
i (ti ; vi , wi ) = 2

[
wi∆i − Di+1 + (1 − vi )Di

]
hi ,

p(2)
i (ti+1; vi , wi ) = 2

[−vi∇i + (wi − 1)Di+1 + Di
]

hi .

}

(3.26)

C2 continuity condition at the knots ti , i = 1, . . . , n − 1, together with the infor-
mation in Equation (3.26), lead to the following linear system of consistency
equations in the unknowns Di , i = 0, . . . , n:

hi Di−1 + {hi (wi−1 − 1) + hi−1(vi − 1)} Di + hi−1 Di+1

= hivi−1∇i−1 + hi−1wi∇i , i = 1, . . . , n − 1. (3.27)

With appropriate end conditions D0 and Dn and the assumption

vi , wi > 2, i = 0, . . . , n − 1, (3.28)
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the system of Equations (3.27) is a strictly diagonally dominant tridiagonal linear
system and thus has a unique solution. This system can be solved using tridiagonal
LU decomposition algorithm. The shape parameters, in the system, are such that:

A. the case bi = 1, wi = 3, i = 0, . . . , n − 1, corresponds to the cubic spline
interpolation and

B. the case bi = 1 is that of rational spline with tension of Section 3.3.

Now we look at the effects of the shape parameters on the rational spline inter-
polant in the rest of this section.

Proposition 3.12. (Global tension property) Let L ∈ C0 [t0, tn] denote the piece-
wise rational linear interpolant defined for t ∈ [

ti , ti+1
]

by L(t) = Li (ti bi ) in
Equation (3.25). Suppose that vi , wi satisfy Equations (3.24), (3.28) and wi ≥
w > 2. Then the rational spline interpolant converges uniformly to L as w → ∞,
i.e. on [t0, tn],

lim
w→∞ ||p − L|| = 0. (3.29)

Proof. Assume that bi = b and wi = w, i = 0, . . . , n − 1. Then from Equation
(3.27), it follows that

lim
w→∞ Di = bhi�i−1 + hi−1�i

hi + bhi−1
, i = 0, . . . , n − 1. (3.30)

More generally, for vi , wi satisfying Equations (3.24) and (3.28), the boundedness
property

max
1≤i≤n−1

||Di ||∞ ≤ max
{
||�||

(
1

bi − 2/w
+ bi−1

1 − 2/w

)
, ||D0||∞, ||Dn||∞

}

(3.31)

can be easily shown. Thus application of tension property, in Remark 11(i), in each
interval gives the result of Equation (3.29). �

Proposition 3.13. (Interval tension property) Let vi and wi be as in Equa-
tions (3.24) and (3.28) ∀i and consider an interval

[
tk, tk+1

]
, for a fixed k ∈

{0, . . . , n − 1}. Then on
[
tk, tk+1

]
, with all fixed,

lim
wk→∞ ||pk − Lk || = 0. (3.32)

Proof. Gauss elimination without pivoting can be applied to the diagonally dom-
inant tridiagonal system (Equations (3.27)) in both a forward and backward direc-
tion, as far as the kth and (k + 1) th equations, respectively, to give

{hk(wk−1 − 1) + hk−1(vk − 1) − ak} Dk + hk−1 Dk+1

= hkvk−1�k−1 + hk−1wk�k − bk,

hk+1 Dk + {hK+1(wk − 1) + hk(vk+1 − 1) − ck} Dk+1

= hk+1vk�k + hkwk+1�k+1 − dk,
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where the terms ak, bk, ck, dk are fixed quantities. Taking the limit wk → ∞ then
gives

lim
wk→∞ Dk = ∇k/bk,

lim
wk→∞ Dk+1 = bk∇k,

⎫
⎬

⎭
(3.33)

This limit property means that the tension result in Equation (3.32) holds for the
rational spline on

[
tk, tk+1

]
. �

Remark 3.14.

(i) Proposition 3.13 also holds for a more general setting, i.e., when wi , i 	= k
are not considered as fixed. In this case, the boundedness property (Equation
(3.31)) holds as in Proposition 3.12 (when the additional constraints wk ≥
w > 2 can be added in the current assumption). This leads to the tension
property in Equation (3.32) in the interval

[
tk, tk+1

]
.

(ii) (Point tension) In addition to the assumptions in the previous remark, if we
also assume that wk−1 → ∞, then the kth equation of the system of Equations
(3.27) results as:

lim
vk ,wk−1→∞ Dk = 0. (3.34)

Thus the curve at the point Pk will appear to have a corner.

3.5 Demonstration

The tension behavior of the rational cubic spline interpolants is illustrated by the
following simple examples for data sets in R2. Figure 3.2 shows the effect of a
progressive increase in global tension with r = 3 (the cubic spline case), 5 and
50. The effect of the high-tension parameter is clearly seen in that the resulting
interpolant approaches piecewise linear form.

Figure 3.3 illustrates the effect of progressively increasing the value of the ten-
sion parameter as r4 = 3, 5 and 50 in one interval, while elsewhere the tension
parameters are fixed equivalent to 3.

Figures 3.4 demonstrate the result of Remark 3.10 (iii) regarding the achieve-
ment of a looser curve than a cubic spline curve; the second curve of the figure is
a cubic spline curve, whereas the first and the last curves show the local and global
behavior against the value 2.1 of the corresponding shape parameters.

Figure 3.5 shows the global tension with w = 2.1, 5 and 50 where the value of
v is assumed as 2.1; Figure 3.6 shows the global tension with v = 2.1, 3, and 50
where the value of w is assumed as 2.1.

The effect of the high-tension parameter is clearly seen in that the resulting
interpolant approaches piecewise rational linear form. Figure 3.7 illustrates the
effect of progressively increasing the value of w3 = v4 in the order of 3, 4 and 6,
for the point tension effect at the knot t4 while Figure 3.8 shows the biased effect
due to progressive decrease in v4 as 3, 2.5 and 2.1; elsewhere the shape parameters
are assumed as 3.
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FIGURE 3.2. Interpolatary rational splines with global tension ri = r .

FIGURE 3.3. Interpolatary rational splines with tension r4 varying.
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FIGURE 3.4. Interpolatary rational splines can produce looser curves than cubic splines.

FIGURE 3.5. Interpolatary rational splines with global tension wi = w.
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FIGURE 3.6. Interpolatary rational splines with global tension vi = v .

FIGURE 3.7. Interpolatary rational splines with point tension at the knot t4.

Figure 3.9 displays a variety of the effects of the shape parameters; the first
curve is a cubic spline curve; the second curve is fine tuned with the choice w3 =
2.1, v11 = 2.1 and vi = wi = 5 for i = 8, 9; the third curve is selected with
vi = wi = 5 for i = 8, 9 and v12 = w11 = 5.
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FIGURE 3.8. Interpolatary rational splines with biased effect using v4.

FIGURE 3.9. Interpolatary rational splines with various shape effects.

3.6 Freeform Curves

B-splines were investigated as early as the nineteenth century by Lobachevsky
(see Farin [6]); they were constructed as convolutions of a certain probability dis-
tribution. In 1946, Schoenberg [28] used B-splines for statistical data smoothing,
and his paper started the modern mathematical theory of spline approximation.

B-splines are a useful and powerful tool for CAGD and they can be found
frequently in the existing CAD/CAM systems. They form a basis for the space
of nth degree splines of continuity class Cn−1. Each B-spline is a non-negative
nth degree splines that is nonzero only on n + 1 intervals. The B-splines form
a partition of unity, that is, they sum up to one. Curves generated by summing



56 3. Rational Cubic Spline with Shape Control

control points multiplied by the B-splines have some very desirable shape proper-
ties, including the local convex hull property and variation diminishing property.

It is desirable to generalize the idea of B-spline-like local basis functions for the
classes of rational splines with shape parameters as considered in the Chapter 2.
The first local basis for GC2 splines was developed by Lewis [10]. In 1981,
Barsky [1] generalized B-splines to β-splines. These splines preserve the geo-
metric smoothness of the design curve while allowing the continuity conditions
on the spline function at the knots to be varied by certain parameters, thus giving
greater flexibility. Later, in 1984. Bartels and Beatty [2] developed local bases for
β-spline curves that are equivalent to Boehm’s [3] γ -splines. Foley [7], in 1986,
constructed a B-spline like basis for weighted splines; different weights were built
into the basis functions so that the control point curve was a C1 piecewise cubic
with local control of interval tension.

In the following section, a B-spline-like local basis is constructed for the ratio-
nal spline of Section 3.2. The design curve maintains the C2 parametric continuity
rather than the more general geometric GC2 arc length continuity achieved by the
v-splines, β-splines, and γ -splines or the C1 continuity of weighted splines.

A method for evaluating the rational cubic B-spline representation of a curve
is suggested by a transformation to piecewise defined rational Bernstein-Bézier
form. This form will also expedite a proof of the variation diminishing property
for the rational B-spline representation.

The results of the freeform rational spline are applied to obtain Bernstein-Bézier
net of tensor product surfaces in Section 3.13 and Bernstein-Bézier representation
of the NURBS in Section 3.12.

3.7 Local Support Basis

For the purpose of the analysis, let additional knots be introduced outside the inter-
val [t0, tn] defined by t−3 < t−2 < t−1 < t0 and tn < tn−1 < tn−2 < tn+3. Let

vi , wi ≥ r > 2, i = −3, . . . , n + 2, (3.35)

where
vi = biwi and 0 < bi < ∞,

are shape parameters defined on this extended partition. Rational cubic spline
function φ j , j = 1, . . . , n + 2, can be constructed (see Figure 3.10) such that

φ j (t) =
{

0 for t < t j−2,
1 for t > t j+1.

(3.36)

On the three intervals
[
ti , ti+1

]
, i = j − 2, j − 1, φ, will have the rational cubic

form:

φ j (t) = R0(θ; vi , wi )φ j (ti ) + R1 (θ; vi , wi ) (θ j (ti ) + hiφ
(1)
j (ti ) /vi )

+R2(θ; vi , wi )φ j (ti+1) − hiφ
(1)
j (ti+1) /wi

+R3 (θ; vi , wi ) φ j (ti+1) , (3.37)
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tj − 2 tj − 1 tj + 1tj

FIGURE 3.10. The rational spline φ j (t).

where Rk (θ; vi , wi ) , k = 0, 1, 2, 3 are defined as in Section 3.2, from Equa-
tions (3.1) and (3.4). The requirement that φ j ∈ C2(−∞,∞) (in particular, at
t j−2, t j−1, t j , t j+1) uniquely determines φ j , since it can then be shown that

φ j
(
t j−2

) = φ
(1)
j
(
t j−2

) = 0,

φ j (t j−1) = µ j−1, φ
(1)
j (t j−1) = µ j−1,

φ j (t j ) = 1 − λ j , φ
(1)
j t j = λ j ,

⎫
⎪⎬

⎪⎭
(3.38)

where

λ j = h jλ j/v j , µ j = h j−1µ j/w j−1,

λ̂ j = h j d j−1/c j , µ̂ j = h j−1d j+1/c j+1,

}
(3.39)

c j = h j−1d j−1 + h jv j−1d j−1

(
h j−1

w j−1
+ h j

v j

)
,

and

d j = h j
(
w j−1(w j−1 − 1) − v j−1

)
/w j−1 + h j−1

(
v j (v j − 1) − w j

)
/v j .

The local support rational cubic B-spline basis is now defined by the difference
functions:

B j (t) = ϕ j (t) − ϕ j+1 (t) , j = −1, . . . , n + 1. (3.40)

Thus, there immediately follows:

Proposition 3.15. (Rational B-spline) The rational spline functions B j (t) , j =
−1, . . . , n + 1 are such that

(Local support) B j (t) = 0, for t ∈ (t j−2, t j+2
)
, (3.41)

(Partition of unity)

n+1∑

j=−1

B j (t) = 1 for t ∈ [t0, tn] . (3.42)
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'tj − 2 tj − 1 tj+1 tj + 2tj

FIGURE 3.11. The rational B-spline B j (t).

An explicit representation (Figure 3.11) of the rational cubic B-spline B j on any
interval

[
ti , ti+1

]
can be calculated from Equations (3.36)–(3.40) as:

B j (t) = R0 (θ; vi , wi ) B j (ti ) + R1 (θ; vi , wi )
(

B j (ti ) + hi B(1)
j (ti ) /vi

)

+R2 (θ; vi , wi )
(

B j (ti+1) − hi B(1)
j (ti+1) /wi

)

+R3 (θ; vi , wi ) B j (ti+1) , (3.43)

where
B j (ti ) = B(1)

j (ti ) = 0, for i 	= j − 1, j, j + 1, (3.44)

and
B j
(
t j−1

) = µ j−1, B(1)
j
(
t j−1

) = µ̂ j−1,

B j
(
t j
) = 1 − λ j − µ j , B(1)

j
(
t j
) = 1 − λ̂ j − µ̂ j ,

B j
(
t j+1

) = λ j+1, B(1)
j
(
t j+1

) = λ̂ j+1.

⎫
⎪⎬

⎪⎭
(3.45)

Careful examination of the Bernstein-Bézier vertices of B j (t) in Equation (3.43)
shows these to be non-negative for vi and wi satisfying Equation (3.35) and we
thus have:

Proposition 3.16. The rational B-spline functions are such that

(Positivity) B j (t) ≥ 0, for all t. (3.46)

3.8 Design Curve

To apply the rational cubic B-spline as a practical method for curve design, a
convenient method for computing the curve representation:

P(t) =
i+2∑

j=i−1

Pj B j (t) , t ∈ [t0, tn] , (3.47)
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is required, where Pj ∈ RN define the control points of the representation. Now,
by the local support property,

P(t) =
i+2∑

j=i−1

Pj B j (t) , t ∈ [ti , ti+1
]
, i = 0, . . . , n − 1. (3.48)

Substitution of Equation (3.43) then gives the piecewise defined rational Bernstein-
Bézier representation:

P(t) = R0 (θ; vi , wi ) Fi + R1 (θ; vi , wi ) Vi + R2 (θ; vi , wi ) Wi + R3 (θ; vi , wi ) Fi+1,
(3.49)

where
Fi = λi Pi−1 + (1 − λi − µi )Pi + µi Pi+1,
Vi = (1 − αi )Pi + αi Pi+1,
Wi = βi Pi + (1 − βi )Pi+1,

⎫
⎬

⎭
(3.50)

with

αi = µi + hi µ̂i/vi = µ̂i (hi−1/wi−1 + hi/vi ) ,

βi = λi+1 + hi λ̂i+1/wi = λ̂i+1 (hi/wi + hi+1/vi+1) .

}
(3.51)

Let
Xi = [ Fi Vi Wi Fi+1

]T
, Zi = [ Pi−1 Pi Pi+1 Pi+2

]T
,

and

Yi =

⎡

⎢⎢
⎣

λi 1 − λi−µi µi
1 − αi αi

βi 1 − βi
λi+1 1 − λi+1−µi+1 µi+1

⎤

⎥⎥
⎦ ,

then the transformation in Equation (3.50) can also be represented in matrix
notation as:

Xi = Yi Zi . (3.52)

The transformation to rational Bernstein-Bézier form is very convenient for
computational purposes and also leads to:

Proposition 3.17. (Variation diminishing property) The rational B-spline curve
P (t) , t ∈ [t0, tn], defined by Equation (3.47), crosses any (hyper) plane of dimen-
sion N − 1 no more times than it crosses the control polygon P joining the control
points

{
Pj
}n+1

j=−1.

Proof. Examination of the coefficients αi , βi in Equation (3.50) shows that

αi ≥ 0, βi ≥ 0, αi + βi ≤ 1.

Thus Vi and Wi lie on the line segment joining Pi and Pi+1, where Vi is before
Wi Also, we can write

Fi = (1 − γi )Wi+1 + γi Vi , (3.53)
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Wi−1

Wi

Pi

Vi

Pi−1

Pi+1

Pi+2

Fi+1

Fi
Vi+1

FIGURE 3.12. Corner cutting to obtain Bernstein-Bézier vertices.

where
γi = (hi−1/wi−1)

(hi−1/wi−1 + hi/vi )
,

and hence 0 < γi < 1. Thus the control polygon of the piecewise defined
Bernstein-Bézier representation is obtained by corner cutting of the B-spline
control polygon; see Figure 3.12. Since the piecewise defined Bernstein-Bézier
representation is variation diminishing, it follows that the B-spline representation
is also variation diminishing. �

3.9 Shape Properties

The shape properties of the rational B-spline representation are examined in the
following propositions:

Proposition 3.18. (Linear B-spline tension property) Let bi = 1, i.e., vi = wi =
ri (say) ≥ r > 2, i = j − 2, . . . , j + 1. Then

lim
r→∞ ||B j − φ j ||0, (3.54)

where

φ j =
⎧
⎨

⎩

(t − t j−1)h j−1, t j−1 ≤ t < t < t j ,
(t j+1 − t)/h j , t j ≤ t < t j+1,
0, otherwise

(3.55)

is the linear polynomial B-spline (see Figure 3.13).
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tj−2 tj−1 tj+1 tj+2tj

FIGURE 3.13. The linear polynomial B-spline.

Proof. The rational B-spline defined by Equation (3.43) can be expressed for
t ∈ [ti,ti+1

]
as:

B j (t) = (1 − θ)B j (ti ) + θ B j (ti+1) + ei (t; ri ), (3.56)

where

ei (t; ri ) =
hiθ(1 − θ)

{
(�i − B(1)

j (ti ))(θ − 1) + (�i B(1)
j (ti+1))θ

}

1 + (ri − 3)θ(1 − θ)
, (3.57)

and
�i = (B j (ti+1) − B j (ti ))/hi , (3.58)

(cf. (3.10)–(3.12)). Here the B j (ti ) and B(1)
j (ti ) values are defined by Equations

(3.43)–(3.45), where for i = j − 1, j, j + 1 they are dependent on ri , i = j −
2, . . . , j + 1. Examination of the coefficients (3.45) reveals that µ̂ j , λ̂ j and hence
the B(1)

j (ti ) are bounded and that

lim
r j−2→∞ B j (t j−1) = lim

r j+1→∞ B j (t j+1) = 0, lim
r j−1,r j →∞ B j (t j ) = 1. (3.59)

It is then a simple matter to show that lim ||ei || = 0 and that Equation (3.54)
holds. �

Remark 3.19. From Equation (3.59), there follow the more precise results that

lim
r j+1→∞

∥
∥B j

∥
∥ = 0 on

[
t j+1, t j+2

]
,



62 3. Rational Cubic Spline with Shape Control

lim
r j−1,r j ,r j+1→∞

∥∥B j − φ j
∥∥ = 0 on

[
t j , t j+2

]
,

lim
r j−2,r j−1,r j →∞

∥
∥B j − φ j

∥
∥ = 0 on

[
t j−2, t j

]
,

lim
r j−2→∞

∥∥B j
∥∥ = 0 on

[
t j−2, t j−1

]
.

(Here, and in the proof of Proposition 3.18 the respective rates at which r j−2, r j−1,
r j and r j+1 tend to infinity are not relevant.)

An immediate consequence of Proposition 3.18 (and Remark 3.19 is:

Corollary 3.20. (Global tension property) Let bi = 1, i.e., vi , wi = ri ≥
r > 2, i = −2, . . . , n +1, and let P̄ denote the rational B-spline control polygon,
defined explicitly on

[
ti , ti+1

]
, i = −1, . . . , n, by

P̄(t) = (1 − θ)Pi + θ Pi+1, θ(t) = (t − ti )/hi . (3.60)

Then the rational B-spline representation (3.47) converges uniformly to P̄ on[
t−1, tn+1

]
as r → ∞.

Corollary 3.20 can be proved directly by studying the behavior of the Bernstein-
Bézier control points in Equation (3.49) as r → ∞. We follow this approach in
the proof of the following proposition.

Proposition 3.21. (Interval tension property) Consider an interval
[
tk, tk+1

]
for

a fixed k ∈ {0, . . . , n − 1} such that vk, wk = rk and let

Qk = (1 − µ)Pk + µPk+1,
Qk+1 = λPk + (1 − λ)Pk+1,

}
(3.61)

denote two distinct points on the line segment of the control polygon joining
Pk, Pk+1, where

λ = hk+1/vk+1

hk−1/wk−1 + hk+1/vk+1 + hk
,

µ = hk−1/wk−1

hk−1/wk−1 + hk+1/vk+1 + hk
,

⎫
⎪⎪⎬

⎪⎪⎭
(3.62)

(Note that Qk is before Qk+1 since λ + µ < 1.) Then the rational B-spline repre-
sentation (see Equation (3.47)) converges uniformly to Q on

[
tk, tk+1

]
as r → ∞.

where
Q(t) = (1 − θ)Qk + θ Qk+1, θ(t) = (t − tk)/hk . (3.63)

Proof. It is a simple matter to show, in Equation (3.39), that

lim
rk→∞ λk = lim

rk→∞ µk+1 = 0,

lim
rk→∞ µk = µ and lim

rk→∞ λk+1 = λ.



3.9. Shape Properties 63

Thus, in the Bernstein-Bézier representation (Equation (3.49)) on
[
tk, tk+1

]
, we

have
lim

rk→∞ Fk = Qk and lim
rk→∞ Fk+1 = Qk+1.

Moreover, the Bernstein-Bézier representation can be expressed as

p(t) = Pk(t; rk, rk) = lk(t) + ek(t; rk, rk), t ∈ [tk, tk+1
]

as in Equation (3.10), where it can be shown that

lim
rk→∞ ‖Qk − lk‖ ≤ lim

rk→∞ ‖Q − P‖ + lim
rk→∞ ‖ek‖ = 0 on

[
tk, tk+1

]
,

which completes the proof. �

Proposition 3.22. (Point tension property) Let vi and wi satisfy Equation (3.35)
and vk, wk−1 → ∞ for some k, 1 ≤ k ≤ n − 1. Then the following holds:

lim
rk ,wk−1→∞ P(t) = Pk . (3.64)

Proof. From Equations (3.42) and (3.47)

P (tk)−Pk =
n+1∑

j=−1

(
Pj − Pk

)
B j (tk)=(Pk−1 − Pk) Bk−1 (tk)+(Pk+1 − Pk) Bk+1 (tk)

(by local support property)

= (Pk−1 − Pk)λk + (Pk+1 − Pk)µk .

It can be simply shown that

lim
rk ,wk−1→∞ λk = lim

rk ,wk−1→∞ µk = 0,

and thus, Equation (3.64) follows straightaway. �

Remark 3.23. Proposition 3.22 shows that if vk, wk−1 → ∞, then part of the
design curve is pulled toward the control point Pk . This can be proved directly by
studying the behavior of the Bernstein-Bézier control points in Equation (3.49).
We follow this approach to look at the biased behavior in the following:

Remark 3.24. (Biased tension control) If vk → ∞ for any k ∈ {0, . . . , n − 1},
then

lim
vk→∞ λk = lim

vk→∞ µk = lim
vk→∞ αk = 0,

and thus from (3.50)
lim

vk→∞ Fk = Pk = lim
vk→∞ Vk .
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FIGURE 3.14. Rational B-spline curves with global tension ri = r .

This shows that a portion of the design curve, within the interval
[
tk, tk+1) is pulled

towards the control vertex Pk . Similar biased behavior can be observed regarding
wk , i.e., if wk → ∞, then

lim
wk→∞ λk+1 = lim

wk→∞ µk+1 = lim
wk→∞ βk = 0

and thus from (3.50)

lim
wk→∞ Fk = Pk+1 = lim

wk→∞ Wk

which shows that the part of the design curve controlled by Wk and Fk+1 is pulled
toward the control vertex Pk+1.

3.10 Demonstration

Consider the data sets in R2 identical to that of the interpolatory examples in
Section 3.5, where the data now define the control points of the rational B-spline
representation. Figures 3.14–3.21 illustrate the corresponding local and global
shape effects to Figures 3.2–3.9, respectively, which confirms the analysis done in
the previous section regarding interval, point and biased shape effects.

3.11 Nurbs

In this section we give a brief description of another class of rational splines which
are commonly known as NURBS (nonuniform rational B-splines). A nonuniform
rational cubic B-spline curve, with the same control polygon as that of previously
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FIGURE 3.15. Rational B-spline curves with tension r4 varying.

FIGURE 3.16. Freeform rational splines can produce looser curves than cubic B-spline.
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FIGURE 3.17. Rational B-spline curves with global tension wi = w.

FIGURE 3.18. Rational B-spline curves with global tension vi = v .
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FIGURE 3.19. Rational B-spline curves with point tension at the knot t4.

FIGURE 3.20. Interpolatary rational splines with biased effect using v4.
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FIGURE 3.21. Rational B-spline curves with various shape effects.

generated rational spline i.e., [Pi : i = −1, . . . , n + 1] and with corresponding
positive weights ui , is given by:

P∗ (t) =

n+1∑

j=−1
ui Pi Bi (t)

n+1∑

j=−1
ui Bi (t)

, (3.65)

where {Bi (t)}n+1
i=−1 is the normalized cubic B-spline basis. Both cubic B-spline

numerator and denominator in (3.65) can be expressed in Bernstein-Bézier form
using transformation of the form Equation (3.50), where vi = wi = 3. This leads
to the representation of the curve (3.65) in piecewise Bernstein-Bézier form:

p(t) = R0(θ)F∗
i + R1(θ)V ∗

i + R2(θ)W ∗
i + R3(θ)F∗

i+1, t ∈ [ti,ti+1
]
, (3.66)

where R j (θ), j = 0, . . . , 3 are appropriately defined rational functions dependent
on ui−1, ui , ui+1, ui+2 with

3∑

j=0

R j (θ) = 1

and

Fi = λ∗
i Pi−1 + (1 − λ∗

i − µ∗
i )Pi + µ∗

i Pi+1 = (1 − γ ∗
i )Wi−1 + γ ∗

i Vi ,
Vi = (1 − α∗

i )Pi + α∗
i Pi+1,

Wi = β∗
i Pi + (1 − β∗

i )Pi+1,

⎫
⎬

⎭
(3.67)
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α∗
i = ᾱi ui+1[

(1 − ᾱi )ui + ᾱi ui+1
] ,

β∗
i = (1 − β̄i )ui+1[

(1 − β̄i )ui + β̄i ui+1
] ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3.68)

γ ∗
i = hi−1

[
(1 − ᾱi )ui + αi ui+1

]

hi−1
[
(1 − ᾱi )ui + ᾱi ui+1

]+ hi
[
1 − β̄i−1)ui−1 + β̄i−1ui

] , (3.69)

λ∗
i = λ̄i ui−1

λ̄i ui−1(1 − λ̄i − µ̄i )µi + µ̄i ui+1
,

µ∗
i = µ̄i ui+1

λ̄i ui−1(1 − λ̄i − µ̄i )ui + µ̄i ui+1
,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3.70)

ᾱi = hi−1

hi−1 + hi + hi+1
,

β̄i = hi−1 + hi

hi−1 + hi + hi+1
,

⎫
⎪⎪⎬

⎪⎪⎭
(3.71)

λ̄i = h2
i

(hi−1 + hi )(hi−2 + hi−1 + hi )
,

µ̄i = h2
i−1

(hi−1 + hi )(hi−1 + hi + hi+1)
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3.72)

Similarly to Equation (3.52), the transformation (in Equation (3.67)) can be repre-
sented in matrix notation as:

X∗
i = Y ∗

i Z∗
i , (3.73)

provided ∗’s are put appropriately. Examination of the coefficients in Equations
(3.68)–(3.72) shows that

0 ≤ α∗
i , β∗

i , γ ∗
i , α∗

i + β∗
i ≤ 1. (3.74)

Thus, as in the previously generated rational spline, the control polygon of
the piecewise defined Bernstein-Bézier representation (Equation (3.66)) can be
obtained by corner cutting (see Figure 3.12 with the replacement of the Bernstein-
Bézier points by the same points with ∗) of the NURBS control polygon and the
NURBS representation is variation diminishing.

Remark 3.25. It can be observed from the algebra of NURBS that if ui → ∞
then F∗

i → Pi (for a fixed i) and the design curves sharply toward Pi in the
region of Pi−2 Pi−1 Pi Pi+1 Pi+2. Thus it seems reasonable to assign high weights
in regions where the curve is expected to curve sharply. But, as compared to the
rational spline (of previous sections), there is not that much freedom for assigning
the weights if all of them are very high. This will not have a significant effect
on the curve since a common factor in all weights will simply cancel out. For
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example, if ui = u, j = i − 1, i, i + 1, i + 2 and u → ∞, then the curve will be
a piece of a cubic spline in the interval

[
ti , ti+1

]
and it will have no effect at all.

3.12 Surfaces

The results of Section 3.8 can be extended for tensor product rational bicubic
B-spline surfaces, i.e., surfaces of the form:

p(
∼
t , t) =

m+1∑

k=−1

n+1∑

l=−1

Pkl B̃k
(
t̃
)

Bl(t), t0 ≤ t̃ ≤ t̃m, t0 ≤ t ≤ tn, (3.75)

with Bl(t) as constructed in Section 3.8 and analogously the B̃k
(
t̃
)

a set of rational
cubic B-splines corresponding to a set of knots tk, k = −3, . . . , m + 3(m ≥ 0)
with shape parameters ṽk, w̃k, k = −2, . . . , m + 2.

If the representation of a rational spline patch p
(
t, t̃
)

ti ≤ t ≤ ti+1, is
required as a rational bicubic Bernstein-Bézier patch

pi, j
(
t̃, t
) =

3∑

k=0

3∑

l=0

Xi, j
k,l Rl

(
θ̃; ṽ j , w̃ j

)
Rl
(
θ; v j , w j

)
, (3.76)

the Bernstein-Bézier points Xi, j
k,l can be computed from the rational B-spline

vertices Pi, j as:
Xi, j = Ỹi Zi, j

(
Y j
)T

, (3.77)

where

Xi, j =

⎡

⎢
⎢⎢⎢
⎣

Xi, j
0,0

Xi, j
1,0

. . .

Xi, j
3,0

Xi, j
0,1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Xi, j
0,3

· · ·
· · ·
Xi, j

3,3

⎤

⎥
⎥⎥⎥
⎦

,

Zi, j =

⎡

⎢⎢
⎣

Pi−1
Pi, j−1
. . .
Pi+2, j−1

Pi−1, j
. . .
. . .
. . .

. . .

. . .

. . .

. . .

Pi−1, j+2
. . .
. . .
Pi+2, j+2

⎤

⎥⎥
⎦ ,

and the matrix Yi is given as in Equation (3.52) with a corresponding expression
for Ỹi .

Remark 3.26. There is a drawback with this rational spline surface in that any of
the shape parameters influences entire corresponding row or column of the surface.
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Similarly, the NURBS construction of Section 3.12 can be extended to sur-
faces as

P∗(t, t) =

m+1∑

j=−1

n+1∑

i=−1
ui, j Pi, j Bi (t)B j (t)

m+1∑

j=−1

n+1∑

i=−1
ui, j Bi (t)B j (t)

. (3.78)

Similar observations, as were made in Remark 3.7 for NURBS, can be made for
these kinds of surfaces i.e.sufficiently large ui, j (fixed i and j) gives a pull to
the surface toward Pi, j in the region

{
Pk,l
}i+2, j+2

k=i−2,l= j−2, but there is a limit to the
assignment of the weights and they cannot be applied blindly, otherwise there may
not be any effect on the surface at all.

3.13 Summary

A C2 rational cubic spline method has been presented for the objective of design-
ing curves. The spline method is capable of designing interpolation as well as
approximation curves to control points. This rational cubic spline method has
been developed with a view toward its applications in computer graphics, geo-
metric modeling, and CAGD. It is quite reasonable to construct a spline method,
which involves two families of shape parameters in a better way than those in
the weighted v-spline of Chapter 2. These parameters provide a variety of local
and global shape controls such as biased, interval and point shape effects. The
visual smoothness of the proposed method is also C2, which is better than that
in weighted v-spline. The rational spline method can be applied to tensor product
surfaces, but unfortunately, in the context of interactive surface design, this ten-
sor product surface is not that useful because any one of the tension parameters
controls an entire corresponding interval strip of the surface. Thus, as an effec-
tive application to surfaces, a method similar to Nielson’s [12] spline blended
method or the methods of Sarfraz [16, 17] may be attempted. This will produce
local shape control, which is quite useful regarding the computer graphics and
geometric modeling applications.

3.14 Exercises

1. Write a program to implement the curve design method in Section 3.2.
2. Write a program to implement the curve design method in Section 3.9.
3. Check the difference of shape effects in your programs of Exercise 3.14.1

and 3.14.2 when the schemes are implemented in scalar form as stated in
Remark 3.3.
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4
Rational Sigma (σ ) Splines

Abstract. As interactive curve design is a basic need for CAD/CAM, computer graphics,
vision, imaging and various other disciplines. It is desired to have a robust, visually
pleasant, well-controlled, and effective scheme that can provide a useful solution to many
problems of different kinds at one platform. A rational spline, with some additional shape
parameters in its description as well as in the description of its piecewise stitching, may
be a good choice in this regard. This chapter has been devoted to a more general rational
spline, known as the sigma (σ ) spline. Although, a σ – spline is a GC1 rational spline
as far as its theoretical smoothness is concerned, in most practical cases, it provides a
C1, GC2 or C2 solution. It is the most generalized spline in the literature and recovers,
as a special case, most of the existing methods in the literature. These methods include
weighted spline, ν – spline, weighted Nu-spline, γ – spline, and so on.

4.1 Introduction

This chapter discusses the rational splines of Chapters 2 and 3 and presents a
generalized description of rational cubics with σ -continuity (c.f. 1.6). The most
general description of rational cubics and σ -continuity constraints provides a vari-
ety of shape control parameters which can be sufficient and highly useful for any
kind of shape influence such as interval tension, point tension, local tension, global
tension, or biased tensions. Interpolatory and freeform structures of the rational
σ -splines can manage to recover a large number of well-known useful methods
[1–28] including weighted splines, ν-splines, weighted ν-splines, gamma-splines,
beta-splines, rational β-splines, rational splines of Chapter 2 and 3, and the ratio-
nal geometric splines of Boehm.

The approaches adopted in the construction of rational σ -splines are quite anal-
ogous to those in Chapters 2 and 3. Section 4.2 discusses the most general form
of a rational cubic. The interpolatory and the freeform descriptions of rational
σ -splines are made in Section 4.3 and 4.4, respectively. Some special cases and
examples are discussed at the end of both of theses sections.

75
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4.2 Generalized Rational Cubic Interpolant

Let Fi ∈ RN be given values at knots ti , i = 0, . . . , n−1, where t0 < t1 < . . . < tn
and let Vi , Wi ∈ RN , i = 0, . . . , n − 1. The most general form of a rational cubic,
which interpolates at the knot, is given by:

pi (t) = (1 − θ)3qi Fi + θ(1 − θ)2vi Vi + θ2(1 − θ)wi Wi + θ3ui Fi+1

(1 − θ)3qi + θ(1 − θ)2vi + θ2(1 − θ)wi + θ3ui
, (4.1)

where 0 ≤ θ ≤ 1, and we assume qi , vi , wi , ui > 0. Then use of the bilinear
transformation

θ �→ θ

ki (1 − θ) + θ

leads Equation (4.1) to:

pi (t) = (1 − θ)3 Fi + θ(1 − θ)2vi Vi + θ2(1 − θ)wi Wi + θ3 Fi+1

(1 − θ)3 + viθ(1 − θ)2 + wiθ2(1 − θ) + θ3 , (4.2a)

where
k3

i = ui/qi ., vi := k2
i ri/ui , wi := ki si/ui . (4.2b)

This can be further expressed as:

pi (ti ) = R0(θ)Fi + R1(θ)Vi + R2(θ)Wi + R3(θ)Fi+1, (4.3)

where the basis functions R1(θ), j = 0, . . . , 3 are Bernstein-Bézier weight func-
tions that depend on vi and wi . The following can be noted:

(i) The curve segment in Equation (4.2) lies in the convex hull of the control
points {Fi , Vi , Wi , Fi+1} (see Proposition 2.1).

(ii) The curve segment (4.3) satisfies the variation diminishing property (see
Proposition 2.2).

(iii) If the pieces Pi (t), i = 0, . . ., n − 1, are joined together with any kind of
continuity, then the composed rational curve

p(t) = pi (t), i = 0, . . . , n − 1,

is at least C0.
(iv) The equivalent Hermite representation of (4.2) is obtained when

Vi = Fi + hi D+
i /vi , Wi = Fi+1 − hi D−

i+1/wi , (4.4)

where
p(1)

(
t+i
) = D+

i ,

p(1)
(
t−i+1
) = D−

i+1

}

(4.5)

(v) The second derivatives of Equation (4.2) at the knots ti and ti+1, are
obtained as:

p(2)
i (ti ) = 2

{(
v2

i − vi − wi
)

Fi − (v2
i − vi

)
Vi + wi Wi

}
/h2

i ,

p(2)
i (ti+1) = 2

{(
w2

i − wi − vi
)

Fi+1 − (w2
i − wi

)
Wi + vi Vi

}
/h2

i .

}

(4.6)
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4.3 Interpolatory Rational σ -Splines

Now, we use a generalized form of continuity, i.e., σ -continuity (c.f. Equation
(1.6)) to connect the pieces of the generalized rational cubic in Equation (4.2).
The second and third equations of the σ -continuity constraints (Equation (1.6))
together with Equations (4.4), (4.5) and (4.6) lead to the system of consistency
equations:

hiσ1,i−1σ3,i D−
i−1 +

{
hi hi−1

2
σ2,i + hiσ3,i (wi−1 − 1) + hi−1σ1,i (vi − 1)

}
D−

i

+ hi−1 D−
i+1 = hiσ3,ivi−1�i−1 + hi−1wi�i , i = 1, . . . , n − 1. (4.7)

in unknowns D−
i , i = 0, 1, . . . , n. Hence for appropriate end conditions D−

0 and
D−

n and the constraints:

σ1,i = 1, σ3,i ≥ 0, σ2,i ≥ 0, vi > 2, wi > 2,∀i, (4.8)

the system of Equations (4.7) defines a diagonally dominant tridiagonal linear
system that can be solved easily using the LU decomposition algorithm. Thus, a
unique rational cubic interpolatory spline is obtained that is at least C1. (Since
σ1,i = 1, we have D−

i = D+
i .)

4.3.1 Shape Control
Now we look at the effects of the shape parameters on the rational spline inter-
polant in the rest of this section.

(i) Let us vary vi and wi where the rest of the shape parameters are fixed (for
simplicity, we can assume σ2,i = 0, σ3,i = 1); this is discussed in detail in
Chapter 2.

(ii) If we vary the σ2,i ’s and keep the others fixed according to constraints (4.8),
then

(a) (Point tension) for fixed i = k if we assume σ2,i → ∞, then the kth

Equation of the system of Equations (4.7) results as:

lim
σ2,k→∞ Dk = 0. (4.9)

Thus the curve at the point Pk will appear to have a corner
(b) (Interval tension) Similarly as above large values of σ2,k and σ2,k+1 cause

Dk and Dk+1 to approach zero. This behavior tightens the curve in the
interval

[
tk, tk+1

]
.

(c) (Global tension) Following in the same way as above, σ2, j → ∞ for all i ,
then

lim
σ2,k→∞ Dk = 0, for i = 1, . . . , n − 1.

Thus the curve is globally tightened in
[
t1, tn−1

]
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(iii) (Biased behavior) If we vary the σ3,i ’s and keep the other shape parameters
fixed according to (4.8), then for any I if σ3,i → ∞, the following relationship
is obtained from the system of Equations (4.7):

Di = vi−1�i−1 − Di−1

wi−1 − 1
.

This shows a biased behavior, i.e., the curve is inclined toward a side of the
interval

[
ti , ti+1

]
. A similar behavior can be observed when σ2,i , σ3,i → ∞.

4.3.2 Some Special Cases
A number of spline methods can be obtained as a result of distinct replacements
of the parameters involved in the above construction. For example

A. The case
B.

σ1,i = 1 = σ3,i , σ2,i = 0, vi = 3 = wi ,

corresponds to the cubic spline interpolation.
C. The case

σ1,i = 1 = σ3,i , σ2,i = 0, vi = wi > 2,

is that of the rational spline method of Chapter 2. This case also recovers the
rational spline with tension [23].

D. The weighted spline [14] can be obtained by the following replacement:

σ1,i = 1, σ2,i = 0, σ3,i = ωi−1

ωi
, and vi = 3 = wi .

E. The Nu-spline [11] can be obtained with the following choice:

σ1,i = 1 = σ3,i , σ2,i = νi ≥ 0, and vi = wi = 3.

F. The replacement

σ1,i = 1, σ2,i = νi

ωi
, σ3,i = ωi−1

ωi
, and vi = 3 = wi .

where νi ≥ 0, ωi ≥ 0, ∀i , gives weighted Nu-spline interpolation method of
Foley [7]. This also covers the cases C and D.

4.3.3 Examples
The shape control of the rational cubic σ -spline interpolants is illustrated by the
following examples for the data sets in R2 similar to that in Chapter 2. Unless
otherwise stated we will assume σ1,i = 1, σ2,i = 0, σ3,i = 1, and vi = 3 = wi in
all the examples.

Interval tension, point tension and biased behavior of the shape parameters vi
and wi are shown in Figures 3.2–3.9.
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FIGURE 4.1. Interpolatary rational σ -splines with σ2,4 varying for point tension.

FIGURE 4.2. Interpolatary rational σ -splines with σ2,4 and σ2,5 varying for interval
tension.

Figure 4.1 illustrates the effect of progressively increasing the value of the point
tension parameter σ2,4 at the knot t4, while Figure 4.2 shows the interval tension
effect due to progressive increases in σ2,4 and σ2,5. Figure 4.3 displays the global
tension effect due to progressive increase in σ2,i . The values of the varying para-
meters, in each curve of the Figures 4.1, 4.2, and 4.3, are taken as 0, 5 and 50,
respectively.

Figure 4.4 demonstrates the result of Remark 4.4(iii) regarding local and global
biased behavior; the shape parameter σ3 is chosen as 1 and 50 in the first and third
curves, respectively, whereas σ3,i is 50 for i = 4, and 1 else where in the second
curve.



80 4. Rational Sigma (σ ) Splines

FIGURE 4.3. Interpolatary rational σ -splines with global tension using the shape para-
meter σ2,i .

FIGURE 4.4. Interpolatary rational σ -splines with local and global biased behavior using
the shape parameter σ3,i .

Figure 4.5 displays a multishape parameter effect; the first curve is a cubic spline
curve; the second curve is fine tuned with the choice σ3,3 = 50, σ2,12 = 5,
vi = wi = 5 for i = 7, 8 and v11 = w11 = 2.1; the third curve is selected
with vi = wi = 5 for i = 7, 8 and v12 = w11 = 5.
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FIGURE 4.5. Interpolatary rational σ -splines fine tuned using multishape parameter effect.

4.4 Freeform Rational σ -Splines

In this section, we present a method for the computation of freeform rational cubic
σ -splines by a transformation to piecewise Bernstein-Bézier form. We adopt the
same strategy and notations in this construction as was adopted for the rational
splines in Chapter 3 except that the piecewise representation of the rational cubic
in each interval is assumed in Bernstein-Bézier form instead of Hermite form.
We consider the most general rational cubic (4.1) and the most general continuity
constraints for our purposes. At the end of this section the σ -spline representation
will also be used to discuss the interpolation problem; this will be in a more gen-
eral setting and with more general shape parameter constraints than the previous
section. Let us assume that

σ1,i , σ3,i > 0, σ2,i ≥ 0, vi > 3qi − 2, wi > 3ui − 2. (4.10)

Now, for the construction of the local support basis functions, let φ j , j =
−1, . . ., n + 2 be the rational σ -spline functions as defined in Equation (4.2)
(see Figure 4.1) with the piecewise representation

φ j (t) = R0(θ)F̂j,i + R1(θ)V̂ j,i + R2(θ)Ŵ j,i + R3(θ)F̂j,i , (4.11)

in each interval
[
ti , ti+1

]
, where Rk(θ), k = 0, . . . , 3 are defined as in Section 4.3

but are now dependent on q, v, w, and u. The requirement that φ j be a rational
σ -spline uniquely determines the following:

F̂i,i−2 = 0, F̂i,i−1 = µi−1, F̂i,i = 1 − λi ,

V̂i,i−2 = 0, V̂i,i−1 = µi−1
γi−1

, V̂i,i = 1,

Ŵi,i−2 = 0, Ŵi,i−1 = λi
1−γi

, Ŵi,i = 1,

⎫
⎪⎪⎬

⎪⎪⎭
(4.12)
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where

µi = γiη1,i

ηi
,

λi = (1 − λi ) η2,i−1

ηi−1
,

γi = hi−1vi ui

hi−1vi ui + hiσ1,i qiwi−1
,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.13a)

η1,i = θ2,i
(
θ3,i+1 − θ4,i+1

)
,

η2,i = θ4,i+1
(
θ1,i − θ2,i

)
,

ηi = θ1,iθ3,i+1 − θ2,iθ4,i+1,

⎫
⎬

⎭
(4.13b)

θ1,i = 2h2
i−1u2

i−1

{
(1 − γi )

(
v2

i − vi (3qi − 2)
)

+ γiwi

}

+ 2hi−2h2
i σ2,iγi q2

i wi−1ui−1

+ 2h2
i q2

i σ3,i

{
γi

(
w2

i−1 − wi−1 (3ui−1 − 2) − vi−1

)}
,

θ2,i = 2h2
i−1wi u2

i−1,

θ3,i = 2h2
i−1u2

i−1 (1 − γi )
(
v2

i − vi (3qi − 2) − wi

)

+ 2hi−1h2
i σ2,iγi q2

i wi−1ui−1

+ 2h2
i q2

i σ3,i

{
γi

(
w2

i−1 − wi−1 (3ui−1 − 2)
)

+ (1 − γi ) vi−1

}
,

θ4,i = 2h2
i σ3,i q2

i vi−1.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.13c)

The local support rational σ -B-spline basis is now defined by the difference
function B j (t) as in Equation (3.6). Thus if in any interval

[
ti , ti+1

]
,

B j (t) = R0(θ)Fj,i + R1(θ)Vj,i + R2(θ)W j,i + R3(θ)Fj,i , (4.14)

then we have:

Fj,i−2 = 0, i − 1 ≥ j ≥ i + 2, Fi,i−1 = µi−1, Fi,i = 1 − λi − µi , Fi,i+1 = λi+1,

Vj,i−2 = 0, i − 2 ≥ j ≥ i + 1, Vi,i−1 = µi−1

γi−1
, Vi,i = 1 − µi

γi
,

W j,i−2 = 0, i − 2 ≥ j ≥ i + 1, Wi,i−1 = 1 − λi

1 − γi
, Wi,i = λi+1

1 − γi+1
.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4.15)

Proposition 4.2. The rational σ -spline functions B j (t), j = −1, . . . , n + l, are
such that

(Local support) B j (t) = 0 for t ∈ (t j−2, t j+2
)
, (4.16)

(Parti tion of unity)

n+1∑

j=−1

B j (t) = 0 for t ∈ (t j−2, t j+2
)
, (4.17)

(Positively) B j (t) = 0 for all t. (4.18)
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Proof. The local support and the partition of unity properties follow immediately
from the definition and the construction of the basis functions. For the positively
property (4.18), it can be noted immediately that for the parameters defined in
(4.10),

γ j , θi, j > 0, for all j and i = 2, 4. (4.19)

Moreover
θ1, j − θ2, j = θ3, j − θ4, j , (4.20a)

where

θ1, j − θ2, j = 2
{

h2
j−1u2

j i−1

{(
1 − γ j

) (
v2

j − v j
(
3q j − 2

))+ γ jw j

}

+h j−2h2
j

2
σ2, jγ j q2

j w j−1u j−1

+h2
j q

2
j σ3, j

{
γ j

(
w2

j−1 − w j−1
(
3u j−1 − 2

)) − v j−1

} }
,(4.20b)

is also positive. Therefore, the quantities η1, j , η2, j and hence

η j = η1, j + η2, j + 2
(
θ1, j − θ2, j

) (
θ3, j+1 − θ4, j+1

)
, (4.21)

are positive. The above imply that all nonzero terms in Equation (4.15) are positive
and thus Equation (4.18) follows.

To apply the rational cubic B-spline as a practical method for curve design, a
convenient method for computing the curve representation

p(t) =
i+2∑

j=i−1

Pj B j (t), t ∈ [t0, tn] , (4.22)

is required, where Pj ∈ RN define the control points of the representation. Now,
by the local support property,

p(t) =
i+2∑

j=i−1

Pj B j (t), t ∈ [ti , ti+1
]
, i = 0, 1, . . . , n − 1. (4.23)

Substitution of (3.10) then gives the piecewise defined rational Berstein-Bézier
representation

p(t) = R0(θ)Fi + R1(θ)Vi + R2(θ)Wi + R3(θ)Fi+1, (4.24)

where
Fi = λi Pi−1 + (1 − λi − µi ) Pi + µi Pi+1,
Vi = (1 − αi ) Pi + αi Pi+1,
Wi = βi Pi + (1 − βi ) Pi+1,

⎫
⎬

⎭
(4.25)

with
αi = η1,i

ηi
, βi = η2,i

ηi
, (4.26)
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The transformation to rational Bernstein-Bézier form is very convenient for com-
putational purposes and also leads to the following:

Proposition 4.3. (Variation diminishing property) The rational σ -B-spline curve
p (t) , t ∈ [t0, tn], defined by Equation (4.22), crosses any (hyper) plane of dimen-
sion N −1 no more times than it crosses the control polygon P joining the control
points

{
Pj
}n+1

j=−1.

Proof. Following the arguments in Equations (4.19)–(4.21), for positivity, in the
previous proposition, it is straightforward that the coefficients αi , βi in Equation
(4.25) satisfy

αi ≥ 0, βi ≥ 0, αi + βi ≤ 1.

Thus Vi and Wi lie on the line segment joining Pi and Pi+1, where Vi is before
Wi . Also, we write

Fi = (1 − γi ) Wi + γi Vi , (4.27)

where we already know that 0 < γi < 1. Thus the control polygon of the piece-
wise defined Bernstein-Bézier representation is obtained by corner cutting of the
σ -B-spline control polygon; see Figure 4.3. Since the piecewise defined Bernstein-
Bézier representation is variation diminishing, it follows that the σ -B-spline rep-
resentation is also variation diminishing.

Remark 4.4. Using the rational σ -B-spline, the interpolation problem of the
rational σ -splines can be tackled through

n+1∑

j=−1

Pj B j (ti ) = Fi , ∀i. (4.28)

where the matrix of the B j (ti ) is tridiagonal matrix. Since 0 < µi , λi < 1/2,
the tridiagonal system of Equations (4.28) is diagonally dominant. Thus a unique
interpolatory rational σ -spline exits with more general shape constraints (4.10)
than (4.8) in Section 4.3.

4.4.1 Shape Control
The parameters defined in Equation (4.10) can be used to control the local or
global shape of the curve:

(i) Since the shape constraints vi > 3qi − 2 and wi > 3ui − 2 must be satisfied,
then increase or decrease in qi and ui corresponds to increase or decrease
in vi and wi , respectively. Keeping qi and ui fixed (say, qi = ui = 1, for
simplicity) and varying vi and wi is discussed in detail in Chapter 3 where
the interval, point and the biased behaviors were observed by using these
parameters.
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(ii) It is a simple matter to see that, for any i when σ2,i is increased (and other
shape parameters are kept fixed), λi , µi → 0 which implies p (ti ) →
Pi . Thus the curve is pulled toward the control point Pi . If we also let
σ2,i → ∞, then we shall have p (ti+1) → Pi+1 and it follows that for any
t ∈ [ti , ti+1

]
, p (t) must converge to a point on the straight line from Pi to

Pi+1. Thus, the behavior of σ2,i can be used to achieve the point and interval
tensions both locally and globally.

(iii) The shape parameter σ1,i also produces a similar shape behavior as that of
σ2,i in a different way. The increase in σ1,i for any i , (while the other shape
parameters are kept fixed) makes the curve approaching the point

P = λPi−1 + (1 − λ)Pi , where 0 < λ = lim
σ1,i →∞ λi .

This shows that the curve is not only pulled toward a point on the line from
Pi−1 to Pi , but also shifts backward. Similarly, if σ1,i+1 is also increased
sufficiently large, this will make the curve tighten between two points P and
Q which lie on the lines from Pi−1 to Pi and Pi to Pi+1, respectively.

(iv) Another interesting shape characteristic can be achieved by the variation of
the shape parameters σ1,i and σ3,i . If they are assumed large enough (and
other shape parameters supposed to be fixed; for simplicity, let vi = 3 = wi
and σ2,i = 0) then λi and µi decrease and increase monotonically towards
0 and 1, respectively. This shows that the curve at ti is pulled and shifted
completely to the control point Pi−1. In the case when σ1,i+1 and σ3,i+1 are
also increased, the curve is shifted and pulled to the line segment Pi−1 Pi .

4.4.2 Some Special Cases
A number of spline methods can be obtained as the result of distinct replacements
of the parameters involved in the above construction. For example

A. The case

σ1,i = σ3,i = 1, σ2,i = 0, qi = ui = 1, vi = wi = 3,

corresponds to the cubic spline representation.
B. The case

σ1,i = σ3,i = 1, σ2,i = 0, qi = ui = 1, vi = wi > 2,

is that of a rational spline with tension [23].
C. The weighted spline [14] can be obtained by the following replacement:

σ1,i = 1, σ2,i = 0, σ3,i = ωi−1

ωi
, ωi > 0, qi = ui = 1, vi = wi = 3.
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D. The Nu-spline [11] can be obtained with the following choice:

σ1,i = 1 = σ3,i = 0, σ2,i = vi ≥ 0, qi = ui = 1, vi = wi = 3.

E. The replacement

σ1,i = 1, σ2,i = νi

ωi
, σ3,i = ωi−1

ωi
, qi = ui = 1, vi = wi = 3,

where vi ≥ 0, ωi > 0, ∀i , gives weighted Nu-spline method of Foley [7].
This also covers the cases C and D.

F. The special case
σ1,i = β1,i , σ2,i = β2,i , σ3,i = β2

1,i , qi = ui = 1, vi = wi = 3,

where β1,i > 1, β2,i > 0, corresponds to the β-splines method.

FIGURE 4.6. Freeform rational σ -splines with σ2,4 varying for point tension control.

FIGURE 4.7. Freeform rational σ -splines with σ2,4 and σ2,5 varying for interval tension.
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G. The rational geometric splines of Boehm [27] can also be recovered. The rela-
tionship of our σ2,i and the tension factors (Boehm’s γi ) used by Boehm for his
curvature continuous rational cubic splines is derived here from our Bernstein
Bézier representation as:

(Boehm’sγi ) = 6hi−1hi u2
i−1

θ1,i − θ2,i
,

where σ1,i = σ3,i = 1. It can be easily noticed that the behavior of
1/(Boehm’sγi ) is the same as that of σ2,i .

4.4.3 Examples
The same data sets in R2 are considered for this section as the interpolatory exam-
ples in the last section, where the data now define the control points of the rational
σ -B-spline representation.

The shape effects of the parameters, mentioned in (i) of Subsection 4.4.1 are
demonstrated in Figures 4.5–4.12.

Figures 4.6–4.10 correspond to the shape parameters of the examples demon-
strated in Figures 4.1–4.5, respectively.

Figures 4.11, 4.12 and 4.13 display the results in (iii) of Subsection 4.4.1. The
first, second and third curve:

(a) of the Figure 4.11, respectively, correspond to the values 1, 5 and 50 of σ1,5,
(b) of the Figure 4.12, respectively, correspond to the values σ1,4 = σ1,5 = 1, 5

and 50,
(c) of the Figure 4.13, respectively, correspond to the values 1, 5 and 50 of σ1,i ,∀i .

FIGURE 4.8. Freeform rational σ -splines with global tension using the shape parame-
ter σ2,i .
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FIGURE 4.9. Freeform rational σ -splines with local and global biased behavior using the
shape parameter σ3,i .

FIGURE 4.10. Freeform rational σ -splines fine tuned using multishape parameter effect.

Demonstration of the results in (iv) of Subsection 4.4.1 is done in Figures 4.14,
4.15 and 4.16. The curves in Figure 4.14 correspond to the values 1, 10 and 1000
of σ1,i = σ3,i for i = 4. The curves in Figure 4.15 are when i = 4, 5 and the
curves in Figure 4.16 are ∀i .
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FIGURE 4.11. Freeform rational σ -splines with σ1,4 varying for appearing a corner in the
middle of the interval.

FIGURE 4.12. Freeform rational σ -splines with σ1,4 and σ1,5 varying to tighten the curve
across the line segments P3 P4 and P4 P5.

FIGURE 4.13. Freeform rational σ -splines with global tension using the shape para-
meter σ1,i .
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FIGURE 4.14. Freeform rational σ -splines with σ1,4 and σ3,4 varying for biased point
tension.

FIGURE 4.15. Freeform rational σ -splines with σ1,i and σ3,i varying for biased interval
tension.



References 91

FIGURE 4.16. Freeform rational σ -splines with σ1,i and σ3,i varying for biased global
tension.

4.5 Exercises

1. Write programs to implement the curve design methods in Section 4.3.2.
2. Write programs to implement the curve design methods in Section 4.4.2.
3. Check the difference of shape effects in your programs of Exercise 4.5.1

and 4.5.2.
4. Check the difference of shape effects in your programs of Exercise 4.5.1

and 4.5.2 when the schemes are implemented in scalar form as stated in
Remark 3.

References
1. Barsky, B.A. (1981), The Beta-Spline: A Local Representation Based on Shape Para-

meters and Fundamental Geometric Measure, Ph.D. Thesis, University of Utah.
2. Bartels, R., and Beatty, J. (1984), Beta-splines with a difference, Technical Report CS-

83-40, Computer Science Department, University of Waterloo, Waterloo, Canada.
3. Boehm, W. (1985), Curvature continuous curves and surfaces, Comp Aided Geom

Design 2(2), 313–323.
4. Cline, A. (1974), Curve fitting in one and dimensions using splines under tension,

Comm ACM 17, 218–223
5. Dierckx, P., and Tytgat, B. (1989), Generating the Bézier points of β-spline curve,
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5
Linear, Conic and Rational Cubic
Splines

Abstract. A rational cubic spline has been used with the view to its applications in com-
puter graphics, vision, and image processing. It incorporates linear, conic and parametric
cubic curve sections as special cases. The parameters (weights), in the description of the
spline curve can be used to modify the shape of the curve, locally and globally. The spline
attains parametric smoothness of different degrees depending on different choices of deriv-
ative settings and nature of curve segments. However, the stitching of the rational cubic
segments preserves C2 smoothness and stitching of the conic segments preserves visually
reasonable C1 smoothness at the neighboring knots. The curve scheme is interpolatory and
can plot parabolic, hyperbolic, elliptic, and circular splines independently as well as bits
and pieces of a rational cubic spline. This chapter discusses cases of elliptic arcs in space
and also introduces intermediate point interpolation scheme which can force the curve to
pass through given point between any segment.

5.1 Introduction

A common problem, in computer graphics, vision, and imaging is to design a
curved outline by stitching small pieces of curves together [1–14]. Piecewise ratio-
nal cubic spline functions provide powerful tools for designing of curves, sur-
faces and some analytic primitives such as conic sections that are widely used in
engineering design and various other applications. Such applications may include
representing a font outline [13], the round corner of an object [3], or a smooth
fit to given data [9]. Several segments of curves, to compose a desired curve
outline, can have different mathematical descriptions. For example, a font “S”
when designed, appears to have straight lines, conics, and cubics as essential
parts of its outline. Single mathematical formulation for the precise definition of
various types of geometry shapes is one of the major advantages of the rational
cubic spline functions. We aim in this chapter to represent a piecewise parametric
curve scheme, which has all the design features to produce a desired manipu-
lated curve.

93
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In [2], C1 rational cubic splines with exact derivatives for control points were
used. This chapter introduces a similar interpolant but with a very simple distance-
based approximated derivative scheme as well as an exact derivative scheme. Our
goal is to achieve results for problems in various applications. This chapter also
describes the parametric C1 and C2 rational cubic spline representation containing
a family of shape control parameters. This family of shape parameters has been
used to produce straight-line segments, conics and cubics.

The following features are also a significant addition to the chapter:

• maintaining a reasonable amount of continuity (C1) between conic and cubic
arcs,

• estimated end derivatives,
• conic (circular, elliptical, parabolic and hyperbolic) splines,
• circular arcs for s given radius or center,
• elliptic arc in space and
• intermediate point interpolation

In [2], the end derivatives are based on the assumption of the user, which is
not convenient. Moreover, the conics are not discussed at all. This chapter has
a description of suitable end derivatives for more pleasing results [14]. In [10],
cubic and conic segments are joined with G1 continuity, which is not reasonable
for some practical applications. Intermediate point interpolation scheme and cir-
cular arcs, presented in [5], are not practical because the space curves and exact
circular arcs are not possible. In [11], intermediate point interpolation scheme with
C0 continuity at neighborhood points was offered. G1 continuity on constrained
guided curve scheme has been introduced in [6] where rational quadratic func-
tions were used. This chapter discusses rational cubic function and offers better
continuity. In [4], the rational quadratic spline is used for the circular spline. This
chapter uses a very simple technique [10] using a rational cubic spline to achieve
the same circular spline.

The curve scheme presented here can generate exact circular, parabolic, hyper-
bolic, and elliptical arcs. Degree elevation techniques have been applied on ratio-
nal quadratic splines as mentioned in [7]. Although NURBS (nonuniform rational
B-spline) representation of ellipse is given in [7], an improved technique [14] is
explained to handle any type of elliptic arcs even in space. In addition, the scheme
has the following properties, which may lead to a more useful approach to curve
and surface design in CAGD:

• The curve has C2 continuity between the rational cubic arcs and C1 continuity
between cubic and conic arcs.

• Suitable end derivatives are estimated.
• The scheme is local, i.e., shape control parameters will not significantly affect

the adjacent parts of the design curve.
• A distance-based approximated derivative scheme is also used to compute con-

trol points. Tangent vectors vary continuously along the curve preserving C1

continuity.
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• Any part of the rational cubic spline can be made conic (with exact circle and
ellipse) or straight line using the same interpolant.

• Intermediate point interpolation scheme has been introduced for use in a guided
curve.

• The scheme can handle any kind of elliptic arc in space.
• All methods are suitable for space curves and hence can also be generalized to

surfaces.

The parametric rational cubic spline scheme is considered in the next section.
Analysis of the designing curve is given in Section 5.3. In Section 5.4, there is a
scheme to calculate the end derivatives (tangents). The conditions for conics and
straight-line segments are discussed in Section 5.5. This section also covers all
types of circular, parabolic, hyperbolic and elliptical arcs and introduces a very
powerful method for intermediate point interpolation. Examples are discussed in
Section 5.6. Finally, the chapter is summarized in Section 5.7.

5.2 The Rational Cubic Spline

The cubic spline is the spline of the lowest degree with C2 continuity. C2 continu-
ity meets the needs of most problems arising from engineering and mathematical
physics. Rational cubic spline functions of lower degree are numerically simple,
stable and are the most fundamental of all rational space curves. Let Fi ∈ Rm ,
i = 1, . . . , n, be a given set of points at the distinct knots ti ∈ R, with unit inter-
val spacing. Consider a first-degree parametric piecewise rational function for the
straight-line segment between Fi and Fi+1:

L(t) ≡ Li (t) = (1 − θ) αi Fi + θβi Fi+1

(1 − θ) αi + θβi
, (5.1)

where
θ = (t − ti )/hi , hi = ti+1 − ti .

The degree elevation formula [1] can be applied to get the quadratic rational Bézier
function:

Q(t) ≡ Qi (t) = (1 − θ)2 αi Fi + θ (1 − θ) γiUi + θ2βi Fi+1

(1 − θ)2 αi + θ (1 − θ) γi + θ2βi
, (5.2)

where Ui may be taken as the point of intersection of tangents at Fi and Fi+1 (see
Figure 5.1).

Applying degree elevation again, we get the rational cubic Bézier function:

P(t) ≡ Pi (t) = N1

N2
, (5.3)

where

N1 = (1 − θ)3 αi Fi + θ (1 − θ)2 (αi + γi ) Vi + θ2 (1 − θ) (βi + γi ) Wi
+θ3βi Fi+1,

N2 = (1 − θ)2 αi + θ (1 − θ) γi + θ2βi ,
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FIGURE 5.1. Plot of P(t) with Vi , Wi from straight line, conic and cubic.

which is a straight-line segment between Fi and Fi+1 with control points:

Vi = 2αi Fi + βi Fi+1

2αi + βi
, Wi = αi Fi + 2βi Fi+1

αi + 2βi
,

and weight γi = αi + βi . Similarly this function (5.3) is a conic curve between Fi
and Fi+1 with following control points:

Vi = αi Fi + γiUi

αi + γi
, Wi = βi Fi+1 + γiUi

βi + γi
,

It is known that only one interpolant (5.3) is enough for a straight-line segment,
conic arc, and cubic arc. It is a C1 Hermite function for:

Vi = Fi + αi

αi + γi
Di , Wi = Fi+1 − βi

βi + γi
Di+1.

This can be achieved by imposing the Hermite interpolation conditions:

P(ti ) = Fi and P(1)(ti ) = Di ,∀i . (5.4)

The interpolant can further be simplified, as targeted, to the interpolant of
Section 3.3 with just single shape parameter in its description. This can be
achieved by having αi = 1, βi = 1 and γi = ri − 1. Thus, it takes the fol-
lowing form:

P (t) ≡ Pi (t)

= (1 − θ)3 Fi + θ (1 − θ)2 (γi + 1)Vi + θ2 (1 − θ) (γi + 1)Wi + θ3Fi+1

(1 − θ)2 + θ (1 − θ) γi + θ2
,

i = 1, . . . . , n − 1, (5.5)
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The following choice of control vertices

Vi = Fi + 1
1 + γi

Di ,

Wi = Fi+1 + 1
1 + γi

Di+1.

⎫
⎪⎪⎬

⎪⎪⎭

leads (5.5) to a C1 piecewise rational cubic Hermite spline. The choice of parame-
ters γi > −1 ensures a strictly positive denominator in the rational cubic. Thus,
from Bernstein-Bezier theory, the curve lies in the convex hull of the control points
{Fi , Vi , Wi , Fi+1} and is variation diminishing.

For the construction of a C2 rational cubic spline, we need to manipulate the
second derivative of (5.5), which is as follows:

P(2)
i (t) = 2

{
Aiθ

3 + Biθ
2 (1 − θ) + Ciθ (1 − θ)2 + Ei (1 − θ)3}

hi {1 + (γi − 2) θ (1 − θ)}3 ,

where
Ai = (γi + 1) (Di+1 − �i ) − Di+1 + Di ,

Bi = 3 (Di+1 − �i ) ,

Ci = 3 (�i − Di ) ,

Ei = (γi + 1) (�i − Di ) − Di+1 + Di ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

and
�i = (Fi+1 − Fi ) /hi .

5.2.1 Estimation of Tangent Vectors
There are different choices of the tangent vectors Di at Fi , which can be chosen
for practical implementation in the computation of a curve with a specific amount
of smoothness. For C1 curve methods, some reasonable tangent approximation
method can be used. The distance-based approximations are found to be reason-
ably good as far as pleasing smoothness is concerned. We now, define the tangent
vectors Di at Fi . For open curves, the end conditions are defined as:

D1 = 2 (F2 − F1) − (F3 − F1) /2,

Dn = 2 (Fn − Fn−1) − (Fn − Fn−2) /2.

}

(5.6)

This choice will control the direction of the curve properly at the end segments.
The tangents at the interior knots, for i = 2, . . ., n − 1, are given by:

Di = ai (Fi − Fi−1) + (1 − ai ) (Fi+1 − Fi ) (5.7)

where
ai = |Fi+1 − Fi |

|Fi+1 − Fi | + |Fi − Fi−1| .



98 5. Linear, Conic and Rational Cubic Splines

FIGURE 5.2. Spline curves with various end conditions: (a) with distance-based derivatives,
(b)–(c) with exact derivatives.

For closed curves, the end conditions are defined as:

F−1 = Fn−1, Fn+1 = F1,

and the tangents at the interior knots are same as in Equation (5.7) but i = 1, . . ., n.
The experiments have shown that the use of the distance-based approximated

derivatives, corresponding to any control polygon (open or closed), provides visu-
ally pleasing output. Figure 5.2(a) is the display of this derivative scheme for an
“S” shaped data. For further details, the reader is referred to Sarfraz et al. [10].

For a higher continuity than C1, more complicated constraints are required to
be fitted. For example, for a C2rational cubic spline, the constraints lead to a tri-
diagonal linear system of equations. This system is diagonally dominant and hence
provides a unique solution. This system can be solved using some tridiagonal lin-
ear system solver like the LU decomposition method. Details are as follows:

C1 constraints

P(1)(t+i ) = P(1)(t−i ), i = 2, . . . , n − 1.

give
Di = γi−1(Fi − Fi−1) − Di−1,

and C2 constraints

P(2)(t+i ) = P(2)(t−i ), i = 2, . . . , n − 1.

lead to the following system of equations:

hi Di + (hi (γi−1 − 1) + hi−1 (γi − 1)) + hi−1 Di+1

= γi−1�i + γi�i−1, i = 2, . . . , n − 1. (5.8)

For the need of graphical results, exact derivatives may be computed from (5.8)
together with the end conditions in (5.6). Figure 5.2 (b) is the demonstration for
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FIGURE 5.3. Curvature plots of spline curves with exact derivatives: (a) with distance-
based end derivatives, (b) with conic-compatible end derivatives.

this derivative scheme. The end conditions used here may not be appropriate for
the objectives of this chapter. Therefore, a reasonable choice has been made in
Section 5.5, which demonstrates the “S” shaped data in Figure 5.2(c). The differ-
ence can be seen in Figure 5.3 demonstrating curvature plots of Figures 5.2(b) and
5.2(c) in Figures 5.3(a) and 5.3(b), respectively.

5.3 Design Curve Analysis

The parameters γi are mainly meant to be used freely to control the shape of the
curve. At the same time, for the convenience of the designer, it is also neces-
sary that the ideal geometric properties of the curve not be lost. The geometric
properties, such as variation diminishing, convex hull, and positivity, need to be
presented in the description of the design curve.

For the constraints, γi > −1,∀i , it is very obvious that the rational cubic is
characterized as of Bernstein-Bézier form. The case for default values of shape
parameters, for γi = 2, is that of cubic Hermite interpolation. Thus, following the
Bernstein-Bézier theory, the piece of curve Pi (t) lies in the convex hull of Fi , Vi ,
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Wi , Fi+1. The variation diminishing property also follows in the same manner as
was seen in Chapter 3. That is, any straight line crossing the control polygon of
Fi , Vi , Wi , Fi+1 does not cross the curve more than its control polygon.

The interval shape property is obvious from the following limit behavior. That
is, the increase in the shape parameter γi in any interval i tightens the curve toward
the line segment joined by the control points and the resulting rational spline inter-
polant is C1 at ti and ti+1. Figure 5.4 demonstrates the distance-based derivative
scheme for tension behavior. Figures 5.4(a)-(c) display the default curve (γi = 2)
and local interval tension (γ2 = 20). Similarly, Figure 5.5 demonstrates the exact
derivative scheme for tension behavior.

lim
γi →∞ Vi = Fi , lim

γi →∞ Wi = Fi+1 and lim
γi →∞ Pi (t) = (1 − θ) Fi + θ Fi+1.

(a) Default curve: g i=2 (b) Local interval tension:
   g2=20

FIGURE 5.4. Demonstration of shape parameters using distance-based derivatives (C1 con-
tinuity).

(a) Default curve: g i=2 (b) Local interval tension:
   g2=20

FIGURE 5.5. Demonstration of shape parameters using exact derivatives (C2 continuity).
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Applying the interval property above successively, the design curve converges to
the control polygon as the derivatives, either being distance-based or computed
from the system of equations, are bounded.

5.4 Estimation of End Tangent Vectors

Tangent vectors for end segments are usually supposed, but less fortunately these
are not always visually pleasing. To make the end segments more appropriate,
a more compatible choice [14] for the curve scheme is presented here. For the
tangent at the first point, let θ1 be the angle between F3 − F1 and F2 − F1. Let T1
be the rotation of F2 around F1 by an angle θ1 on the plane passing through F1,
F2 and F3. Now, the tangent vector D1, at first point, can be derived as follows:

µ1 = (F2 − F1)
2

2 (F2 − F1) · T1
, U1 = F1 + µ1T1, V1 = F1 + 2U1

3
, D1 = 3 (V1 − F1) ,

(5.9)
where µ1 is determined by the condition:

|U1 − F1| = |U1 − F2| . (5.10)

Similarly, for tangent vector Dn at the last point, let θn be the angle between
Fn−2 − Fn and Fn−1 − Fn . Let Tn be the rotation of Fn−1 around Fn by an angle
θn on the plane passing through Fn , Fn−1 and Fn−2. Then

µn−1 = (Fn−1 − Fn)2

2 (Fn−1 − Fn) · Tn
, Un−1 = Fn + µn−1Tn,

Wn−1 = Fn + 2Un−1

3
, Dn = 3 (Fn − Wn−1) ,

where µn−1 is determined by the condition:

|Un−1 − Fn| = |Un−1 − Fn−1| . (5.11)

Visual difference between different types of end tangent vectors has been demon-
strated in Figure 5.6.

5.5 Conic Splines and Straight Line

Conics and straight-lines are the most important parts in designing. These can
be achieved through a rational cubic interpolant (5.3). It is interesting to see that
one can use the same interpolant for all types of curves. As mentioned before, Ui
is the point of intersection of tangents at Fi and Fi+1. In case the tangents are
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(a) Supposed (b) Distance based (c) Reasonable

FIGURE 5.6. Demonstration of end derivatives using exact derivatives (C2 continuity).

(a) Circular (b) Elliptical (c) Parabolic (d) Hyperbolic

FIGURE 5.7. C1 Conic spline.

parallel, Ui can be taken as the point where the arc is desired to be divided into
two pieces; for example, it may be the inflection or the middle point, and so on.

For conic section properties and choice of shape parameters, various conics are
recovered depending upon the nature of weights [8]. Also, readers are referred
to [7] and [1] for details. According to [7], the conic shape factor:

k = 1
γ 2

i
(5.12)

determines the conic if the three weights are changed in such a way that k is
not changed. Thus, any two weights can be chosen arbitrarily; the conic is then
determined by the third weight. The C1 conic spline is:

• Elliptic if −1 < γi < 2 (Figure 5.7(b)).
• Parabolic if γi = 2 (Figure 5.7(c)).
• Hyperbolic if γi > 2 (Figure 5.7(d)).
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FIGURE 5.8. C2 conic spline.

Similarly C2 elliptic, parabolic, and hyperbolic splines are given in Figures 5.8(b),
5.8(c), and 5.8(d), respectively. The corresponding curvature plots of Fig-
ures 5.8(b)–(d) are shown in Figures 5.9(b)–(d).

5.5.1 Conic Arc in Cubic Spline
Rational cubic interpolant (5.5) can easily adjust conic segments in cubic spline.
Cubic segments are already joined by C2 continuity but there is also a need for
some smoothness between conic and cubic segments. C1 continuity is enough for
visually pleasing results. Let the i th segment between Fi and Fi+1 be a conic
curve. If i > 1, then for C1 continuity at Fi , impose the constraints P(1)(t−i ) =
P(1)(t+i ) to find

Wi−1 = (2 + γi−1 + γi ) Fi − (1 + γi ) Vi

1 + γi−1
. (5.13)

If i < n, then for C1 continuity at Fi+1, impose the constraints P(1)(t−i+1) =
P(1)(t+i+1) to find

Vi+1 = (2 + γi + γi+1) Fi+1 − (1 + γi ) Wi

1 + γi+1
. (5.14)

5.5.2 Circular Spline
For the G1 circular spline, see Figure 5.10, consider:

γi = 2 cos φ, (5.15)

where φ is the angle between Fi+1 − Fi and Ui − Fi . Let Ti be the unit vector
along Di , and Ui , the point of intersection of tangent vectors at Fi and Fi+1. Then,
we have:

Ui = Fi + µi Ti , (5.16)
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FIGURE 5.9. Curvature plots of Figure 5.8: (a) circular spline, (b) elliptic spline, (c) par-
abolic spline, (d) hyperbolic spline.

where µi is determined by the condition:

|Ui − Fi | = |Ui − Fi+1| , (5.17)

which yields the following:

µi = (Fi+1 − Fi )
2

2 (Fi+1 − Fi ) · Ti
. (5.18)
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FIGURE 5.10. Bézier points of a circular arc.

FIGURE 5.11. A three-point circle given in rational cubic Bézier form.

The circular spline, thus obtained, has been shown in Figure 5.7(a). Figure 5.11
shows a three-point exact circle.

5.5.3 Circular Arc
This section is devoted to the construction of a circular arc. The cases for a given
radius and given center are discussed independently.
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5.5.3.1 Circular Arc for Given Radius

Let r be the given radius of the circular arc such that r > (|Fi+1 − Fi |)/2. Then,
the center M can lie anywhere on the circle centered at N = (Fi + Fi+1)/2 and
having radius b as follows:

b =
√

r2 − |Fi+1 − Fi |2
4

. (5.19)

It is preferred that M lie on the plane passing through Fi , Fi+1 and Úi , where Úi
is the intersection of Fi − Di and Fi+1 − Di+1. Therefore, the circular arc should
lie on the side of Úi . Let e1 be the rotation of Fi+1 around N by an angle θ on the
plane passing through Fi , Fi+1 and Úi , where θ = π/2 for anticlockwise rotation
and θ = −π/2 for clockwise rotation.

Now, e = (e1 − N )/|e1 − N | is a unit vector passing through N and perpendic-
ular to Fi+1 − Fi . Then, M = N + be will be the center of our required circular
arc. Let φ = 	 Fi M N . Replace φ with −φ if circular arc rotation is anticlockwise.
Next, one can find γi from (5.15). Let T ′ be the rotation of Fi+1 around Fi through
angle φ on the plane passing through Fi , Fi+1 and Úi from which one can have
Ti = (T ′ − Fi )/|T ′ − Fi |, a unit tangent vector at Fi . Now use (5.16) to find Ui ,
(5.5) to find control points Vi and Wi , (5.13) for C1 continuity at Fi , (5.14) for C1

continuity at Fi+1 and finally use rational cubic interpolant (5.3) for the required
circular arc. In this scheme, the radius r can be used as a shape control parameter
demonstrated in Figure 5.12.

5.5.3.2 Circular Arc for a Given Center

Let M be the given center of the circular arc such that |Fi+1 − M | = |Fi −
M |. Let M ′ be the rotation of M around Fi by an angle θ on the plane passing
through Fi , Fi+1 and M , where θ = π/2 for clockwise rotation and θ = −π/2
for anticlockwise rotation. Ti = (M ′ − Fi )/|M ′ − Fi | is a unit tangent vector at

FIGURE 5.12. Rational cubic spline with a mid-interval as a circular arc piece for radius
r = 15 (dashed), 18 (bold), 24 (normal).
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FIGURE 5.13. Rational cubic spline with mid-interval as a circular arc piece for a given
center.

Fi . Let φ be the angle between Fi+1 − Fi and Ti . Now use (5.15) to find γi , (5.16)
to find Ui , (5.5) to find control points Vi and Wi , (5.13) for C1 continuity at Fi ,
(5.14) for C1 continuity at Fi+1 and finally use rational the cubic interpolant (5.3)
for required circular arc. Figure 5.13 shows the plot of C-type rational cubic spline
with the mid-segment as a circular arc. The center of this circular arc is shown as
small disk where given data is shown as small circles.

5.5.4 Elliptic Arc
This section is devoted to the construction of an elliptic arc in three dimension.
Very complicated cases have also been treated, e.g., when the major axis becomes
much larger than the minor axis and the required elliptic arc consists of the highest
curvature part of the ellipse.

Given a start point Fi , end point Fi+1, center M , unit vector along major axis
X , unit vector along minor axis Y , semi-major axis a and semi-minor axis b (see
Figure 5.14), XMY is a local coordinate system in space. Let θs = 	 X M Fi and
θe = 	 X M Fi+1. If necessary, use the Newton-Raphson method to compute θs
and θe. If θs > θe, replace θs with θs −2π . S(= M +a cos θ X +b sin θY }) a point
on an elliptic arc, where θ = (θs + θe)/2. Let Ui be the point of intersection of
tangents T0(= −a sin θs X + b cos θsY ) and T1(= −a sin θe X + b cos θeY ) at Fi
and Fi+1 respectively. Let R be the point of intersection of S − Ui and Fi+1 − Fi .
The quadratic rational Bézier arc (5.2) can be written in the form:

Q(u) = (1 − u)2 Fi + u (1 − u) γiUi + u2 Fi+1

(1 − u)2 + u (1 − u) γi + u2
. (5.20)

Now the line L(u) = [Fi , Fi+1] is obtained by taking γi = 0. Therefore,

L(u) = (1 − u)2 Fi + u2 Fi+1

(1 − u)2 + u2
, (5.21)
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Fi

Fi+1

Vi

Wi

M
X

Y
Ui

R

S

qe qs

FIGURE 5.14. Bézier points of an elliptic arc.

which is convex combination of Fi and Fi+1 and

|R − Fi |
|R − Fi+1| = u2

1 − u2 . (5.22)

Then u = c/(1 + c), where

c =
√

|R − Fi |
|R − Fi+1| . (5.23)

Therefore, Q(u) = S and from (5.20), we can easily find

γi = 1
u (1 − u) |Ui − S| ×

{
(1 − u)2 (S − Fi ) +u2 (S − Fi+1)

}
(Ui − S) .

(5.24)

Now use (5.5) to find control points Vi and Wi and rational cubic interpolant
(5.3) for the required elliptic arc. A demonstration of a four-point ellipse is given
(see Figure 5.15) in rational cubic Bézier form. Figure 5.16 shows an elliptic arc
in space that follows the given information:

a = 20, b = 1, M = (0, 0, 2),

Fi = (18.967819,−2.184863, 3.943775),

Fi+1 = (−7.476452, 1.674027, 1.144135),

X = (0.990033,−0.099335, 2.099833),

Y = (0.109252, 0.989038, 1.900665).
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FIGURE 5.15. A four-point ellipse given in rational cubic Bézier form.
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FIGURE 5.16. An elliptic arc in space.

5.5.5 Intermediate Point Interpolation
For the intermediate point interpolation, we need to insert point C between Fi and
Fi+1 while preserving some reasonable continuity (C1) at Fi and Fi+1. Consider:

Ui = 1
u(1 − u)γi

[{
(1 − u)2 + u (1 − u) γi + u2

}
C − (1 − u)2 Fi − u2 Fi+1

]
,

where
u = |Fi − C |

|Fi − C | + |Fi+1 − C | . (5.25)

Next, use (5.5) to find control points Vi and Wi , (5.13) for C1 continuity at Fi ,
(5.14) for C1 continuity at Fi+1. Finally, use the rational cubic interpolant (5.3)
for the required result. Figure 5.17(a) shows an intermediate point interpolation in
the middle segment where the curve is forced to pass through different small disks.

The parameter u can also be used as a shape control parameter within the range
0 < u < 1. For different values of u, one can construct a family of curves interpo-
lating C (small disk) as shown in Figure 5.17(b).
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(a) u is calculated

(b)  u = 0.2 (normal), 0.4 (dashed), calculated (bold)

FIGURE 5.17. Intermediate point interpolation.

5.5.6 Straight-Line Segment
For a straight-line segment using a rational cubic interpolant (5.3), we have the
following four methods:

1. Consider γi = 0.
2. Replace Ui with Fi or Fi+1 and then use (5.5) to find control points Vi and Wi .
3. Use an intermediate point interpolation scheme by inserting point C on the line

joining Fi and Fi+1.
4. Consider γi = αi + βI ; then find control points Vi and Wi from (5.4).

5.6 Examples

Data taken from a Times New Roman font “S” has been interpolated by a default
rational cubic spline in Figure 5.18(a). It is not as desired. Point and interval ten-
sion parameters are changed to achieve visually pleasing shape for font “S” in
Figure 5.18(b).

Figures 5.19–5.22 illustrate the design of a rational cubic spline used for a surface
of revolution that represents a cup, lamp, bowling pin and vase. Figures 5.19(a)–
5.22(a), are the default shapes with exact derivatives and use default values of
shape parameters, i.e., γi = 2. Figures 5.19(b)–5.21(b), are also exact derivatives,
whereas Figure 5.22(b) is plotted with distance-based approximated derivatives.
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(a) Default (b) With interval and Point

tension control

FIGURE 5.18. Times New Roman font “S” with rational cubic spline interpolation.

FIGURE 5.19. Rational cubic spline: (a) default curve, (b) curve with shape control, (c)
shaded surface (cup) designed with curve in (b).

To make these figures well-shaped and pleasing, we use shape control parameters
and insert some conic or straight-line segments connected by C1 continuity with
the neighborhood cubic segments.

Further details about Figures 5.19–5.22 are as follows. In Figure 5.19(b), γ1 =
100, γ3 = 10 and γ4 = 100 from the bottom. The second segment is a circular
arc. All other segments are cubics connected by C2 continuity and use default
values of shape parameters. In Figure 5.20(b) (from bottom), γ1 = 100, γ3 =
100, γ5 = 100, γ6 = 0.1 and γ7 = 100. The second segment is a circular arc
with radius 15. All other segments are cubics connected by C2 continuity and use
default values of shape parameters. In Figure 5.21(h) (from top), the first segment
is a circular arc with radius 8; the second to last is a conic; and the last one is
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FIGURE 5.20. Rational cubic spline: (a) default curve, (b) curve with shape control,
(c) shaded surface (lamp) designed with curve in (b).

FIGURE 5.21. Rational cubic spline: (a) default curve, (b) curve with shape control,
(c) shaded surface (bowling pin) designed with curve in (b).

FIGURE 5.22. Rational cubic spline: (a) default curve, (b) curve with shape control,
(c) shaded surface (vase) designed with curve in (b).
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a straight line. All other segments are cubic connected by C2 continuity and use
default values of shape parameters. Figure 5.22(k) (from bottom) is taken with
γ1 = 200, γ7 = 0.01, γn−1 = 100. The fifth segment is a circular arc. All other
segments are cubics connected by C1 continuity and use default values of shape
parameters.

5.7 Summary

This chapter has described an interval-controlled rational cubic interpolation
scheme. The scheme offers a number of possible ways in which the shape of
the corresponding curves may be altered by the users. Such a scheme can be a
useful addition to an interactive design package, with the user having enough
control over the curve segments. The provision of the shape parameters, in the
description of the piecewise rational functions, provides the freedom to modify
the shape in the desired regions in a stable manner. The rational spline scheme is
meant for parametric curves and is capable of designing plane as well as space
curves. It is an interpolatory rational spline scheme enjoying all the ideal geomet-
ric properties. It has features to produce all types of conic curves in such a way
that the whole design curve may be produced as a circular, elliptic, parabolic, or
a hyperbolic spline curve. In addition, the desired conic pieces may also be fitted
within the rational cubic spline. Overall smoothness of the rational cubic spline is
C2, whereas the conics are stitched with C1 continuity. Linear segments can also
fitted as part of the whole scheme. The curve scheme is extendable to surfaces.

5.8 Exercises

1. Show that, for the constraints, αI > 0, βI > 0 and γi > −αi , −βi , ∀i , the
rational cubic (5.3) is characterized as a Bernstein-Bézier form.

2. Prove that the values of shape parameters as αi = 1 = βi and γi = 2 reduce
the rational cubic (5.3) to the standard cubic Hermite form.

3. Prove that, for the constraints, αI > 0, βI > 0 and γi > −αi , −βi , ∀i , the
rational cubic (5.3) lies in the convex hull of Fi , Vi , Wi , Fi+1.

4. Prove that, for the constraints, αI > 0, βI > 0 and γi > −αi ,−βi ,∀i , the
rational cubic (5.3) follows the variation diminishing property. That is, any
straight line crossing the control polygon of Fi , Vi , Wi , Fi+1 does not cross
the curve more than its control polygon.

5. Write a program to implement the C2 rational cubic spline scheme with exact
derivatives.

6. Write a program to implement the C1 rational cubic spline scheme with
distance-based derivatives.

7. Implement the rational cubic spline in Exercises 5.8.5 and 5.8.6 with unit para-
meterization as well as chord length parameterization. How different would
the two rational cubic curves look? Please test it for at least two example data.
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8. Write a program to implement the rational cubic spline scheme with
distance-based derivatives but resulting in an elliptic curve.

9. Write a program to implement the rational cubic spline scheme with
distance-based derivatives but resulting in a hyperbolic curve.

10. Write a program to implement the rational cubic spline scheme with distance-
based derivatives but resulting in a parabolic curve.

11. Write a program to implement the rational cubic spline scheme with distance-
based derivatives but resulting in a curve with circular pieces.

12. Write a program for the C2 rational cubic spline which, in addition to passing
through the regular data points, can also pass through another desired data
point(s) in some desired piece(s).

13. Derive the tridiagonal linear system of equations by imposing the constraints
for C2 continuity

P(2)
(
t−i
) = P(2)

(
t+i
)
, i = 2, 3, . . . , n − 1

on rational cubic function P(t) in (5.3) with control points in (5.5).
14. Write a program to solve the tridiagonal linear system of equations in Exercise

5.8.13 by LU-factorization to find the values of exact derivatives Di , i =
2, . . ., n − 1 by estimation of appropriate end derivatives.

15. Write an algorithm to implement the rational cubic spline scheme for closed
data.

16. Find the equation in (5.15) for the quadratic rational function Q(t) to be a
circular arc with condition in (5.17).

17. Derive the formula for intermediate point interpolation in Section 5.5 to find
the value of Ui .

18. Write a program to implement the elliptic arc in three dimensions by using
given data in Section 5.5.

19. Prove the fact that the presented spline scheme, in this chapter, has C2 con-
tinuity between the rational cubic arcs and C1 continuity between cubic and
conic arcs.

20. Show, by practical implementation of Exercise 5.8.5, that the scheme is local,
i.e., shape control parameters will not significantly affect the adjacent parts of
the design curve.

21. Implement Exercises 5.8.5–5.8.8 to show that all these methods are suitable
for space curves and hence can also be generalized to surfaces.
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6
Shape-Preserving Rational Interpolation
for Planar Curves

Abstract. Data visualization is an important issue in information visualization. In specific
applications, data may have different shapes when occurring in scientific phenomena or in
some other perspective. A simple application may be when data is globally monotone or
convex. Representing data in a visually meaningful and computationally efficient way is a
significant topic to consider. This chapter deals with such situations using the piecewise
rational cubic interpolant of Section 3.3. For simplicity, the shape parameters introduced
in each interval have been constrained to solve the problem of shape-preserving interpo-
lation for planer curves. Scalar curves are also considered as a special case, but they are
discussed in detail in Chapters 7 and 8.

6.1 Introduction

Many authors work in the area of representing shape-preserving curves for shaped
data. For brevity, the reader is referred to [1–23]. This chapter uses the piece-
wise rational cubic interpolant of Section 3.3, where only one shape parameter
is introduced in each interval, to solve the problem of shape-preserving interpo-
lation for plane curves. The scalar curves are also considered as a special case,
but their detailed versions have been discussed in details in Chapters 7 and 8. The
results derived here are actually the extensions of the results of Delbourgo and
Gregory [4] who developed a C1 shape-preserving interpolation scheme for scalar
curves using the same piecewise rational function. They derived the constraints,
on the shape parameters occurring in the rational function under discussion, to
make the interpolant preserve the monotonic and/or convex shape of the data.

This chapter begins with some preliminaries about the rational cubic inter-
polant. The constraints with convex and/or monotonic data are derived in
Sections 6.3, 6.4 and 6.5. These constraints depend on the tangent vectors. The
description of the tangent vectors, which are consistent and dependent on the
given data, is made in Section 6.6. The shape-preserving results are explained
with examples in Section 6.7.

117
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6.2 The Rational Cubic Interpolant

Let Fi ∈ R2, i = 0, 1, 2, . . . , n be a given set of data points, where t0 < t1 <
. . . < tn . We consider the C1 piecewise rational cubic interpolant as follows:

p(t) = (1 − θ) fi + θ(1 − θ)2(ri Fi + hi Di ) + θ2(1 − θ)(ri Fi+1 − hi Di+1) + θ3 Fi+1
1 + (ri − 3)θ(1 − θ)

,

(6.1)
which was discussed in Section 3.3. We use this to generate an interpolatory planar
curve that preserves the shape of the data. Let

p(t) = (p1(t), p2(t)) ,
Fi = (xi , yi ) ,

Di = (Dx
i , Dy

i
)
,

�i = (�x
i ,�

y
i
)
,

⎫
⎪⎪⎬

⎪⎪⎭
(6.2)

where
�x

i = (xi+1 − xi )

hi
,�

y
i = (yi+1 − yi )

hi
,

and Di denotes the tangent vector to the curve at the knot ti . It can be noted that
p(t) interpolates the points Fi and the tangent vectors Di at the knots ti .

The parameter ri is to be chosen such that ri > −1, which ensures a strictly
positive denominator in the rational cubic. For our purposes ri , will be chosen to
ensure that the interpolant preserves the shape of the data. This choice requires the
knowledge of p(1)(t) and p(2) (t) which are as follows.

p1(t)= (1 − θ)4 Di +α1.iθ(1 − θ)3 + α2.iθ
2(1 − θ)2 + α3.iθ

3(1 − θ)+Di+1θ
4

{1 + (ri − 3)θ(1 − θ)}2 ,

(6.3)

p2(t) = 2{α4.i (1 − θ)3 + α5.iθ(1 − θ)2 + α6.iθ
2(1 − θ) + α7.iθ

3

hi {1 + (ri − 3)θ(1 − θ)}3 , (6.4)

where
α1.,i = 2(ri�i − Di+1),

α2,.i = (r2
i + 3)�i − ri (Di + Di+1),

α3,i = 2(ri�i − Di ),

α4,i = 2ri (�i − Di ) − Di+1 + Di ,

α5,i = 3(�i − Di ),

α6,i = 3(Di+1 − �i ),

α7,i = ri (Di+1 − �i ) − Di+1 + Di

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.5)

and we denote
α j,i = (αx

j,i , α
y
j,i ). (6.6)
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6.3 Interpolation of Convex Data

We assume a strictly locally convex set of data so that

�i = ai�i−1 + bi�i+1, i = 1, 2, . . . , n − 2, (6.7a)

or equivalently the vectors

�i × �i+1, i = 1, 2, . . . , n − 2, (6.7b)

must be in the same directions. To have a convex interpolant p (t) and to avoid the
possibility of p (t) having straight line segments, it is necessary that the tangent
vectors should satisfy the following constraints:

�i = ai�i−1 + bi�i , i = 1, 2, . . . , n − 1, ci , di > 0, (6.8a)

with appropriate end conditions D0 and Dn. Or, equivalently the following vectors

Di × �i ,�i × Di+1,�i × �i+1, (6.8b)

must be in the same direction ∀i. Thus if

β1,i = �x
i �

y
i+1 − �

y
i �x

i+1,

β2,i = Dx
i �

y
i − Dy

i �x
i ,

β3,i = �x
i Dy

i+1 − �
y
i Dx

i+1,

β4,i = Dx
i Dy

i+1 − Dy
i Dx

i+1,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(6.9)

then we immediately have the following:

Lemma 6.1. The conditions (6.7) and (6.8) imply that

β j,i , j = 1, . . . , 4, i = 0, 1, . . . , n − 1,

must be of the same sign.

Now assume without loss of generality that the data is consistent with a convex
curve with positive curvature. Then by, Lemma 6.1, we must have

β j,i > 0, j = 1, . . . , 4, i = 0, 1, . . . , n − 1. (6.10)

Moreover, p (t) is convex, with positive curvature if and only if

p(1)
1 (t)p(2)

2 (t) − p(2)
1 (t)p(1)

2 (t) > 0, (6.11)

for all t ∈ [t0, tn] (The case of the negative curvature can be treated in a similar
way when the inequality is reversed.) After some simplifications using (6.2)–(6.6),
it can be shown that for t ∈ [ti , ti+1

]
,

p(1)
1 (t)p(2)

2 (t) − p(2)
1 (t)p(1)

2 (t) =
2

8∑

j=1
γ j,i (1 − θ) j−1θ8− j

hi {1 + (ri − 3)θ(1 − θ)}5 , (6.12)
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where

γ1,i = (ri β3,i − β4,i ),
γ2,i = 2(ri − 1)(riβ3,i − β4,i ) + 3β3,i ,

γ3,i = 3β2,i + 6(ri − 1)β3,i + [(ri − 1)2 + 2](ri β3,i − β4,i ),

γ4,i = (7ri − 6)β2,i + [r2
i + 2(ri − 2)2 + ri + 1]β3,i + (2ri − 1)(ri β3,i − β4,i ),

γ5,i = (7ri − 6)β3,i + [r2
i + 2(ri − 2)2 + ri + 1]β2,i + (2ri − 1)(ri β2,i − β4,i ),

γ6,i = 3β3,i + 6(ri − 1)β2,i + [(ri − 1)2 + 2](ri β2,i − β4,i ),
γ7,i = 2(ri − 1)(riβ2,i − β4,i ) + 3β2,i ,
γ8,i = (ri β2,i − β4,i ).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.13)
Thus, from (6.12), necessary conditions for convexity are

γ1,i > 0 and γ8,i > 0 (6.14a)

The sufficient conditions for convexity are

γ j,i > 0, j = 2, . . . , 7. (6.14b)

and a sufficient condition for (6.14b) together with conditions (6.14a), is

ri ≥ max
{

1,
β4,i

β2,i
,
β4,i

β3,i

}
. (6.15)

A number of choices of ri can be adopted for graphical demonstration. It has been
found that if

Mi = max
{

β4,i

β2,i
,
β4,i

β3,i

}
and mi = min

{
β4,i

β2,i
,
β4,i

β3,i

}
,

the choice

ri = 1 +
(

1 + Mi

2

)2

+
(

1 + mi

2

)2
, (6.16)

satisfies (6.15) and produces pleasing graphical results.

Remark 6.2.

(a) It follows immediately that the choice of ri in (6.16) is such that ri > 1.
(b) A strictly convex data set has been assumed so far. Otherwise, if �i = �i+1

for some i , i.e., Fi , Fi+1 and Fi+2 are collinear, then p (t) must be linear on
[ti , ti+1]. Thus we must have D j = D j+1 = � j on [t j , t j+1], j = i, I +1 and
the rational cubic then reduces to the straight-line segment.

p(t) = (1 − θ)Fj + θFj+1, j = i, I + 1.

6.4 Interpolation of Monotonic Data

Let us assume for simplicity that

�x
i 	= 0, i = 0, . . . , n − 1, (6.17)
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and that the data is monotonic increasing and arises from a function. Then we must
have

�
y
i

�x
i

≥ 0, i = 0, . . . , n − 1, (6.18)

i.e., �x
i and �

y
i are of the same sign. The case of a monotonic decreasing set of

data can be treated in a similar manner when the inequalities are reversed. The nec-
essary conditions for the interpolant p (t) to be monotonic are then the following:

Dy
i

Dx
i

≥ 0, i = 0, . . . , n − 1, (6.19)

i.e., Dx
i and Dy

i are of the same sign. We also note that Dx
i and Dy

i must have the
same sign as �x

i and �
y
i , respectively. Thus we have the following:

�x
i �

y
i , Dx

i Dy
i ≥ 0,

Dx
i �

y
i , Dy

i �x
i ≥ 0,

�x
i Dy

i+1,�
y
i Dx

i+1 ≥ 0,

⎫
⎪⎬

⎪⎭
(6.20)

for i = 0, . . . , n − 1.

Remark 6.3. Let
β̂1,i = �x

i �
y
i ,

β̂2,i = Dx
i �

y
i + �x

i Dy
i ,

β̂3,i = �x
i Dy

i+1 + �
y
i Dx

i+1,

β̂4,i = Dx
i Dy

i+1 + Dy
i Dx

i+1,

β̂5,i = Dx
i Dy

i .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (6.21)

Then it follows from (6.20) that

β̂ j,i ≥ 0, j = 1, . . . , 5, i = 0, . . . , n − 1. (6.22)

Now p (t) is monotonic increasing if and only if

p(1)
2 (t)

p(1)
1 (t)

≥ 0,∀t ∈ [t0, tn] . (6.23)

i.e., p(1)
1 (t) and p(1)

2 (t) are of the same sign. Thus, (6.23) can be equivalently
written as

p(1)
1 (t)p(1)

2 (t), t ∈ [t0, tn] . (6.24)

After some simplifications, using (6.2)–(6.6), it can be shown that for t ∈[
ti , ti+1

]
,

p(1)
1 (t)p(1)

2 (t) =

9∑

j=1
γ̂ j,1(1 − θ)9− jθ j−1

{1 + (ri−3)θ(1 − θ)}4 , (6.25)
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where

γ̂1,i = Dx
i Dy

i ,

γ̂2,i = Dx
i α

y
1,i + αx

1,i Dy
i = 2ri β̂2,i − 2β̂4,i ,

γ̂3,i = Dx
i α

y
2,i + αx

1,iα
y
1,i + αx

2,i Dy
i ,

γ̂4,i = Dx
i α

y
3,i + αx

1,iα
y
2,i + αx

2,iα
y
1,i + αx

3,i Dy
i ,

γ̂5,i = Dx
i Dy

i+1 + αx
1,iα

y
3,i + αx

2,iα
y
2,i + αx

3,iα
y
1,i + Dx

i+1 Dy
i ,

γ̂6,i = αx
1,i Dy

i+1 + αx
2,iα

y
3,i + αx

3,iα
y
2,i + Dx

i+1α
y
1,i ,

γ̂7,i = αx
2,i Dy

i+1 + αx
3,iα

y
3,i + Dx

i+1α
y
2,i ,

γ̂8,i = αx
3,i Dy

i+1 + Dx
i+1α

y
3,i = 2ri β̂3,i − 2β̂4,i ,

γ̂9,i = Dx
i+1 Dy

i+1.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.26)

The conditions
Dx

j Dy
j ≥ 0, j = i, i + 1, (6.27)

are necessary for the interpolant to be monotonic increasing on
[
ti , ti+1

]
(see

Lemma 6.3) and, assuming these necessary conditions, sufficient conditions are
as follows:

γ̂ j,i ≥ 0, j = 2, . . . , 8. (6.28)

It should be noted that if �
y
i = 0, then Dy

i = Dy
i+1 = 0 and hence β̂2,i = β̂3,i = 0.

Moreover p2 (t) = yi , ti ≤ t ≤ ti+1, therefore p (t) is constant on
[
ti , ti+1

]
.

If �
y
i 	= 0, then a sufficient condition for (6.28) is

ri ≥ max

{
Dx

i + Dx
i+1

�x
i

,
Dy

i + Dy
i+1

�
y
i

}

, (6.29)

Moreover, since

max

{
β̂4,i

β̂2,i
,
β̂4,i

β̂3,i

}

≥ max

{
Dx

i + Dx
i+1

�x
i

,
Dy

i + Dy
i+1

�
y
i

}

, (6.30)

the choice,

ri = β̂4,i (β̂2,i + β̂3,i )

β̂2,i β̂3,i
, (6.31)

satisfies (6.29) and provides nice graphical results.

Remark 6.4. As mentioned in Remark 2.3, the scalar case can be considered as
an application of interpolation scheme (t, p (t)) in R2 to the values (ti , Fi ) ∈ R2

and derivatives (1, Di ) ∈ R2, i = 0, 1, . . . , n. It can also be noted that �i =
(1,�i ). Therefore the convexity and monotonicity constraints, in this case are,
respectively,

ri ≥ max
{

Di+1 − Di

�i − Di
,

Di+1 − Di

Di+1 − �i

}
, (6.32)
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and
ri ≥ max

{
2,

Di+1 + Di

�i

}
, (6.33)

which are same as in [4].

6.5 Interpolation of Convex and Monotonic Data

In this section we consider the possibility that together with a strict convexity con-
dition, the data also satisfy a monotonicity condition. Let us assume for simplicity
that the data satisfy (6.17) and the monotonicity condition (6.18). The inequalities

0 ≤ Dy
0

Dx
0

<
�

y
0

�x
0

<
Dy

1
Dx

1
< . . . <

�
y
i−1

�x
i−1

<
Dy

i
Dx

i
<

�
y
i

�x
i

< . . . <
Dy

n

Dx
n
, (6.34)

then must be satisfied. Any convex interpolant must then also be monotonic. This
result follows since

p(1)
2 (t)

p(1)
1 (t)

=
t∫

to

p(1)
1 (t)p(2)

2 (t) − p(2)
1 (t)p(1)

2 (t)

(p(1)
1 (t))2

dt + p(1)
2 (t0)

p(1)
1 (t0)

=
t∫

to

p(1)
1 (t)p(2)

2 (t) − p(2)
1 (t)p(1)

2 (t)

(p(1)
1 (t))2

dt + Dy
0

Dx
0
.

Hence Dy
0

Dx
0

and the convexity condition (6.11) imply that

p(1)
2 (t)

p(1)
1 (t)

≥ 0,∀t ∈ [t0, tn]. (6.35)

Moreover, for the data satisfying (6.34), it can be simply shown that

max

{
β̂4,i

β̂2,i
,
β̂4,i

β̂3,i

}

≥ max

{
Dx

i + Dx
i+1

�x
i

,
Dy

i + Dy
i+1

�
y
i

}

.

Therefore, the convex interpolation method of the Section 6.2 is also suitable for
the interpolation of convex and monotonic data, and the convexity condition (6.15)
is sufficient to ensure that the monotonicity condition (6.29) is satisfied.

6.6 Choice of Tangent Vectors

In most applications, the tangent vectors Di are not given and hence must be deter-
mined from the data Fi ∈ R2, i = 0, 1, . . . , n. Delbourgo and Gregory [4] have
described arithmetic and geometric mean derivative choices for their convexity
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and convexity-/monotonicity-preserving scalar curves. Similar choices of tangent
vectors can be defined for plane curves, which satisfy the shape-preserving condi-
tions. The arithmetic mean choice of tangent vectors is

Di = λi�i−1 + (1 − λi )�i , i = 0, 1, . . . , n − 1, (6.36a)

where
λi = hi

(hi−1 + hi )
, (6.36b)

While if p (t) is not closed, the tangents at the endpoints will be given as follows:

D0 = λ0�0 + (1 − λ0)�2,0,
Dn = λn�n−1 + (1 − λn)�n,n−2,

}
(6.36c)

where
λ0 = 1 + h0

h1
, λn = 1 + hn−1

hn−2
,

�2,0 = F2 − F0

t2 − t0
,�n,n−2 = Fn − Fn−2

tn − tn−2
.

⎫
⎪⎬

⎪⎭
(6.36d)

These arithmetic mean approximations are suitable for convex data since they sat-
isfy the necessary conditions for convexity and produce pleasing graphical results.

The geometric means are defined as:

Di = ((�x
i−1)

λi (�x
i )1−λi , (�

y
i−1)

λi (�
y
i )1−λi ), i = 1, . . . , n − 1, (6.37a)

with the end conditions

D0 = ((�x
0)λ0(�x

2,0)
1−λ0 , (�

y
0)λ0(�

y
2,0)

1−λi ),

Dn = ((�x
n−1)

λn (�x
n,n−2)

1−λn , (�
y
n−1)

λn (�
y
n,n−2)

1−λi ),

}
(6.37b)

where the choice of λi ’s is as given in (6.36b) and (6.36d). These approximations
are suitable for the interpolation of the monotonic data. These approximations are
also referred in the case when data is both monotonic and convex as they satisfy
the corresponding necessary conditions.

6.7 Examples

Figures 6.1 and 6.2 demonstrate the convexity- and monotonicity-preserving
results corresponding to the arithmetic and geometric derivative values, respec-
tively; the first and second curves in each of these figures represent the scalar and
parametric cubic spline-preserving interpolations. The shape-preserving results
for the data, which are both monotonic and convex, are shown in Figure 6.3. Arith-
metic derivative values are used in the second and fourth curves; the geometric
mean choice of derivative values is considered in the third and sixth curves. The
first three curves are scalar and the rest of them are parametric curves.
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(iv)(iii)

(i) (ii)

FIGURE 6.1. Convexity-preserving rational cubic interpolation.

(i)

(iii)

(ii)

(iv)

FIGURE 6.2. Monotonicity-preserving rational cubic interpolation.
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(i) (ii) (iii)

(iv) (v) (vi)

FIGURE 6.3. Convexity/monotonicity preserving rational cubic interpolation.

6.8 Summary

A rational cubic interpolant, with one family of shape parameters, has been utilized
to obtain C1 monotonicity and convexity-preserving interpolatory spline curves.
The shape constraints are restricted on shape parameters to assure the shape preser-
vation of the data. For the C1 interpolant, the choices on the derivative parameters
have been defined. The solution to the shape-preserving spline exists and provides
a unique solution.

The rational spline scheme has been implemented successfully and it demon-
strates nice looking visually pleasant and accurate results. The user should not be
worried about struggling and looking for some appropriate choice of parameters,
as in the case of an ordinary rational spline, having some control on the curves.
The shape-preserving spline is described in the form of planer curves where as it
is also implementable in the scalar case.

6.9 Exercises

1. Extend the curve scheme in Section 6.2 to a parametric curve scheme and write
a program to demonstrate the effect of the shape parameters for CAD/CAM
purposes. (Hint: The reader is referred to Chapter 3 for this purpose)

2. Extend the curve scheme in Section 6.2 to a parametric curve scheme such that
it preserves the positive data.

3. Extend the curve scheme in Section 6.2 to a parametric curve scheme such that
it preserves the positive and monotone data.
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4. Extend the curve scheme in Section 6.2 to a parametric curve scheme such that
it preserves the positive and convex data.

5. Extend the curve scheme in Section 6.2 to a parametric curve scheme such that
it preserves the positive, monotone and convex data.

6. Write programs to visualize the results of the schemes in Exercises 6.9.1–6.9.5.
7. Extend the curve scheme in Section 6.2 to a C2 curve scheme.
8. Extend the curve scheme in Section 6.3 to a C2 curve scheme.
9. Extend the curve scheme in Section 6.4 to a C2 curve scheme.

10. Extend the curve scheme in Section 6.5 to a C2 curve scheme.
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7
Visualization of Shaped Data
by a Rational Cubic Spline

Abstract. A smooth curve interpolation scheme for positive, monotonic and convex data is
described. This scheme uses piecewise rational cubic functions. The two families of para-
meters, in the description of the rational interpolant have been constrained to preserve the
shape of the data. The rational spline scheme has a unique representation. In addition to
preserving the shape of positive, monotonic and convex data sets, it also possesses extra
features to modify the shape of the design curve when desired. The degree of smoothness
attained is C1.

7.1 Introduction

Smooth curve representation, to visualize the scientific data, is of great sig-
nificance in the area of computer graphics and in particular data visualization.
Particularly, when the data is obtained from some complex function or from some
scientific phenomena, it becomes crucial to incorporate the inherited features of
the data. Moreover, smoothness is also one of the very important requirements
for a pleasing visual display. Ordinary spline schemes, although smoother, are
not helpful for the interpolation of the shaped data. Extremely misguided results,
violating the inherited features of the data, can be seen when undesired oscilla-
tions occur. For example, for the positive data set in Table 7.1, the corresponding
curve in Figure 7.1 is not as may be desired by the user for a positive data. The
user would be interested in visualizing it as it is displayed in Figure 7.2. Thus,
unwanted oscillations that completely destroy the data features need to be con-
trolled. Another example is the monotonically increasing data set in Table 7.2. The
corresponding traditional spline curve is shown in Figure 7.3, which has destroyed
the features of monotonicity as may be desired corresponding to Figure 7.4. Simi-
larly, a traditional spline curve in Figure 7.13 is not displaying the convex data in
Table 7.10 such that the curve is also convex.

Interpolation is a fundamental process in scientific visualization. Smooth curve
representation, to visualize the scientific data, is of great significance in various
areas of scientific research including scientific visualization, computer graphics,

129
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TABLE 7.1. Oxygen levels in the gas.

i 1 2 3 4 5 6 7
xi 0 2 4 10 28 30 32
yi 20.8 8.8 4.2 0.5 3.9 6.2 9.6

20
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5 

0

−5
0  5 10 20 25 30 3515

15

FIGURE 7.1. The default rational cubic spline for the positive data in Table 7.1.

geometric modeling, numerical analysis, approximation theory, and so on. Espe-
cially when the data arises from some complex function or from some scientific
phenomena, it becomes crucial to incorporate the inherited features of the data. It
gives an insight and guide to understanding some physical phenomenon pertaining
to the data, which one would otherwise only have partial information about. It is
an effective way of communication because it helps to represent the numeric data
in a quickly understandable pictorial display.

If smoothness is one of the very important requirements for pleasing visual dis-
play of the data on one hand, the computational efficiency and accuracy are not less
significant on the other hand. Ordinary spline schemes, although smoother, are not
helpful for the interpolation of the shaped data. Severely misguided results, violat-
ing the inherited features of the data, are seen when undesired oscillations occur.
Thus, unwanted oscillations, which may completely destroy the data features must
be controlled.
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FIGURE 7.2. The default shape-preserving spline for the positive data in Table 7.1.

TABLE 7.2. Akima’s data set.

i 1 2 3 4 5 6 7 8 9 10 11
xi 0 2 3 5 6 8 9 11 12 14 15
yi 10 10 10 10 10 10 10.5 15 30 60 85

This chapter examines the problem of shape preservation of data (xi , fi ), i =
1, 2, . . . , n, where xi represents the data site and fi is the data value at site xi .
Positivity, monotony and convexity are the basic and fundamental shapes, which
normally arise in everyday scientific phenomena. These shapes are the targeted
features here. As a first step, we generate an empirical model of the data to be
visualized. As a second step, we construct a model curve that matches the data
values at the location allowing no deviations. Afterwards, the model curve will be
constrained to reflect a continuous visual display of the data.

Various authors have worked in the area of shape preservation [1–23]. In
this chapter, the shape-preserving interpolation has been studied for positive,
monotonic and convex data, using rational cubic splines. The motivation to
this work is due to the past work of many authors, e.g., quadratic interpolation
methodology has been adopted in [1, 15] for the shape-preserving curves. Fritsch
and Carlson [3] and Fritsch and Butland [5] have discussed the piecewise cubic
interpolation to monotonic data. Also, Passow and Roulier [2] considered the
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FIGURE 7.3. The default rational cubic spline for the monotonic data in Table 7.2.
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FIGURE 7.4. The default shape-preserving spline for the monotonic data in Table 7.2.
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piecewise polynomial interpolation to monotonic and convex data. In particu-
lar, an algorithm for quadratic spline interpolation is given in McAllister and
Roulier [1]. An alternative to the use of polynomials for the interpolation of
monotonic and convex data is the application of piecewise rational quadratic
and cubic functions by Gregory [4]. Rational functions have been discussed by
Sarfraz [9] in a parametric context. Scalar representations of rational functions,
in a more generalized and effective way, have been made in [18–23]. These rep-
resentations mainly deal with the shape-preserving data visualization and are the
main objective of the chapter.

The theory of methods, in this chapter, has a number of advantageous features.
It produces C1 interpolant. No additional points (knots) are needed. In contrast,
the quadratic spline methods of Schumaker [6] and the cubic interpolation method
of Brodlie and Butt [7] require the introduction of additional knots when used
as shape-preserving methods. The interpolant is not concerned with an arbitrary
degree as in [4]. It is a rational cubic with cubic numerator and cubic denominator.
The rational spline curve representation is bounded and unique in its solution.

The chapter begins with a definition of the rational function in Section 7.2 where
the description of rational cubic spline, which does not preserve the shape of
positive and/or monotonic data, is made. Although this rational spline was dis-
cussed in Sarfraz [16], it was in the parametric context that it was useful for
design applications. This section reviews it for the scalar representation so that
it can be utilized to preserve the scalar-valued data. The positivity problem is dis-
cussed in Section 7.3 for the generation of a C1 spline which can preserve the
shape of a positive data. The sufficient constraints on the shape parameters have
been derived to preserve and control the positive interpolant. The monotonicity
problem is discussed in Section 7.4 for the generation of a C1 spline which can
preserve the shape of monotonic data. The sufficient constraints, in this section,
lead to a monotonic spline solution. Section 7.5 discusses the scheme when a data
set has convexity features. Section 7.6 concludes the chapter.

7.2 Rational Cubic Spline with Shape Control

Let (xi , fi ), i = 1, 2, . . . , n, be a given set of data points, where x1 < x2 < . . . <
xn . Let

hi = xi+1 − xi , �i = fi+1 − fi

hi
, i = 1, 2, . . . , n − 1. (7.1)

Consider the following piecewise rational cubic function:

s(x) ≡ si (x) = Ui (1 − θ)3 + vi Viθ(1 − θ)2 + wi Wiθ
2(1 − θ) + Ziθ

3

(1 − θ)3 + viθ(1 − θ)2 + wiθ2(1 − θ) + θ3 , (7.2)

where
θ = x − xi

hi
. (7.3)
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To make the rational function (7.2) C1, one needs to impose the following inter-
polatory properties:

s(xi ) = fi , s(xi+1) = fi+1
s(1)(xi ) = di , s(1)(xi+1) = di+1

}
, (7.4)

which provide the following manipulations:

Ui = fi , Zi = fi+1

Vi = fi + hi di

vi
, Wi = fi+1 − hi di+1

wi

⎫
⎬

⎭
, (7.5)

where s(1) denotes derivative with respect to x and di denotes derivative value
given at the knot xi . This leads the piecewise rational cubic (7.2) to the following
piecewise Hermite interpolant s ∈ C1[x1, xn]:

s(x) ≡ si (x) = Pi (θ)

Qi (θ)
, (7.6)

where

Pi (θ) = fi (1 − θ)3 + vi Viθ(1 − θ)2 + wi Wiθ
2(1 − θ) + fi+1θ

3,

Qi (θ) = (1 − θ)3 + viθ(1 − θ)2 + wiθ
2(1 − θ) + θ3.

The parameters vi ’s, wi ’s, and the derivatives di ’s are to be chosen such that the
monotonic shape is preserved by the interpolant (7.6). One can note that when
vi = wi = 3, the rational function obviously becomes the standard cubic Hermite
polynomial. Variation for the values of vi ’s and wi ’s control (tighten or loosen) the
curve in different pieces of the curve. This behavior can be seen in the following
subsection.

7.2.1 Shape Control Analysis
The parameters vi ’s and wi ’s can be utilized properly to modify the shape of the
curve according to the desire of the user. Their effectiveness, for the shape control
at knot points, can be seen that if vi , wi−1 → ∞, then the curve is pulled toward
the point (xi , fi ) in the neighborhood of the knot position xi . This shape behavior
can be observed by looking at si (x) in Equation (7.6). This form is similar to that
of a Bernstein-Bezier formulation. One can observe that when vi , wi−1 → ∞,
then Vi and Wi−1 → fi .

The interval shape control behavior can be observed by rewriting si (x) in Equa-
tion (7.6) to the following simplified form:

s(x) = fi (1 − θ) + fi+1θ

+
[
(1− θ)(di − �i ) + θ(�i − di+1) + θ(1− θ)�i (wi − vi )

]
hiθ(1− θ)

Qi (θ)
.

(7.7)
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When both vi and wi → ∞, it is simple to see the convergence to the following
linear interpolant:

s(x) = fi (1 − θ) + fi+1θ. (7.8)

It should be noted that the shape control analysis is valid only if the bounded deriv-
ative values are assumed. A description of appropriate choices for such derivative
values is made in the following subsection.

7.2.2 Determination of Derivatives
In most applications, the derivative parameters {di } are not given and hence must
be determined either from the given data (xi , fi ), i = 1, 2, . . . , n, or by some
other means. In this article, they are computed from the given data in such a way
that the C1 smoothness of the interpolant (7.6) is maintained. These methods are
the approximations based on various mathematical theories. The descriptions of
such approximations are as follows:

7.2.2.1 Derivative Method I

The arithmetic mean method is the three-point difference approximation method
based on arithmetic manipulation. It is defined as follows:

di =
{

0, if �i−1 = 0 or �i = 0,
(hi�i−1 + hi−1�i ) / (hi + hi−1) , otherwise, i = 2, 3, . . . , n − 1.

(7.9)
The end conditions are given as:

d1 =
{

0, if �1 = 0 or sgn
(
d∗

1
) 	= sgn (�1) ,

d∗
1 = �1 + (�1 − �2) h1/ (h1 + h2) , otherwise. (7.10)

dn =
{

0, if �n−1 = 0 or sgn
(
d∗

n
) 	= sgn (�n−1) ,

d∗
n = �n−1 + (�n−1 − �n−2) hn−1/ (hn−1 + hn−2) , otherwise.

(7.11)

7.2.2.2 Derivative Method II

The geometric mean method provides the non-linear approximations which are
defined as follows:

di =
{

0, if �i−1 = 0 or �i = 0,

�
hi /(hi−1+hi)
i−1 �

hi−1/(hi−1+hi)
i otherwise, i = 2, 3, . . . . . . ., n − 1.

(7.12)
The end conditions are given as:

di =
{

0, if�1 = 0 or �3,1 = 0
�1
{
�1/�3,1

}h1/h2 , otherwise.
(7.13)

di =
{

0, if �n−1 = 0 or �n,n−2 = 0
�n−1

{
�n−1/�n,n−2

}hn−1/hn−2 , otherwise.
(7.14)
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where
�3,1 = ( f3 − f1) / (x3 − x1) ,

�n,n−2 = ( fn − fn−2) / (xn − xn−2) .

}
(7.15)

7.2.2.3 Derivative Method III

Another nonlinear choice of derivative values is the following:

di =
{

0 if fi+1 − fi−1 = 0,

�i−1�i/
[
( fi+1 − fi−1) / (xi+1 − xi−1)

]
otherwise, i = 2, 3, . . . , n − 1

with end conditions

d1 =
{

0 if f3 − f1 = 0,

�2
1/�3,1 otherwise,

dn =
{

0 if fn − fn−2 = 0,

�2
n−1/�n,n−2 otherwise

For given bounded data, the derivative approximations in Subsections 7.2.2.1,
7.2.2.2 and 7.2.2.3 are bounded. Hence, for bounded values of the appropriate
shape parameters:

vi , wi , i = 1, 2, . . . n − 1, (7.16)

the interpolant is bounded and unique. Therefore, we can conclude the above dis-
cussion in the following:

Theorem 7.1. For bounded vi , wi ,∀i , and the derivative approximations in Sub-
sections 7.2.2.1, 7.2.2.2 and 7.2.2.3, the spline solution of the interpolant (7.6)
exists and is unique.

7.2.3 Examples and Discussion
For the demonstration of a C1 rational cubic curve scheme, the derivatives are
computed from the Subsections 7.2.2.1. We choose the following choice of shape
parameters:

vi = 3 = wi , (7.17)

to generate the initial default curves. This initial default curve is actually the same
as a cubic spline curve. Further modification can be made by changing these para-
meters interactively.

Figures 7.1 and 7.3 are the default curves for the positive and monotonically
increasing data in Table 7.1 and Table 7.2, respectively. The data in Table 7.1 has
been taken from an experiment showing oxygen levels in the flue gas (see [7]) and
the data in Table 7.2 is another scientific data (Akima’s data) discussed in [3]. It
can be seen that the ordinary spline curves do not guarantee to preserve the shape
of the data.
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FIGURE 7.5. The rational cubic spline with global shape control having vi = 25 = wi , ∀i .

Figures 7.5 and 7.6 are for the demonstration of global shape control vi = wi =
25, 500,∀i , respectively. One can see that the increasing global values of the shape
parameters gradually pull the curve toward the control polygon, and hence the
default curve moves toward the data-preserved curve. But, this way the curve is
getting tightened everywhere which may be undesired.

Another alternate is the allocation of values to the shape parameters according
to the nature of the curve behavior over various intervals. For example, the curves
in Figures 7.7 and 7.8 are for the shape parameter values in Tables 7.3 and 7.4,
respectively. These curves seem to visually satisfy the shapes preserved. That is,
one can note that the curves seem to preserve the inherent features of the data
in Tables 7.1 and 7.2. But these shapes were achieved after making a couple of
experiments for different values of parameters, which is very time consuming and
not very accurate and, therefore, is not recommended for practical applications too.

The problems, mentioned in the above paragraphs, are the basic motivation for
the discussion in this chapter. These problems are to be removed and an automated
solution is to be found out. Some constructive approaches have been adopted in
the coming sections. The user has been provided facility to visualize positive and
monotonic data sets in an automated way. Moreover, some extra degree of free-
dom has also been provided in case of further modification in the visualization of
automated shaped design curve.
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FIGURE 7.6. The rational cubic spline with global shape control having vi = 500 = wi , ∀i .
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FIGURE 7.7. The rational cubic spline with various choices of shape parameters as men-
tioned in Table 7.3.
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FIGURE 7.8. The rational cubic spline with various choices of shape parametrs as men-
tioned in Table 7.4.

TABLE 7.3. Suitable shape parameters for data set in Table 7.1.

i 1 2 3 4 5 6
vi 3 3 5 10 3 3
wi 3 3 3 12 3 3

TABLE 7.4. Suitable shape parameters for Akima’s data set.

i 1 2 3 4 5 6 7 8 9 10
vi 3 3 3 3 3 3 9 3 8 3
wi 3 3 3 3 3 3 9 3 8 3

7.3 Positive Spline Interpolation

The rational spline method, described in the previous section, has deficiencies
as far as the positivity-preserving issue is concerned. For example, the ratio-
nal cubic in Section 7.2 does not preserve the shape of the positive data (see
Figure 7.1). Very clearly, this curve does not preserve the shape of the data. It is
necessary to assign appropriate values to the shape parameters so that it generates
a data-preserved shape. Thus, it looks as if ordinary spline schemes do not provide
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the desired shape features, and hence some further treatment is required to achieve
a shape-preserving spline for positive data.

One way, for the above spline method, to achieve the positivity preserving inter-
polant is to play with shape parameters vi ’s and wi ’s, on trial and error basis, in
those regions of the curve where the shape violations are found. This strategy may
result in a required display as can be seen in the previous section. But this is not a
comfortable and accurate way to manipulate the desired shape preserving curve.

Another way, which is more effective, useful and is the objective of this arti-
cle, is the automated generation of positivity-preserving curve. This requires an
automated computation of suitable shape parameters and derivative values. To
proceed with this strategy, some mathematical treatment is required which will
be explained in the following paragraphs.

For simplicity of presentation, let us assume positive set of data:

(x1, f1), (x2, f2), . . . , (xn, fn)

so that
x1 < x2 < . . . < xn, (7.18)

and
f1 > 0, f2 > 0, . . . , fn > 0, (7.19)

It is required to develop sufficient conditions on piecewise rational cubics under
which C1 positive interpolation is preserved. The key idea, to preserve positivity
using s(x), is to assign suitable automated values to vi , wi in each interval.

As vi , wi > 0 guarantee strictly positive denominator Qi (θ), so initial condi-
tions on vi , wi are:

vi > 0, wi > 0(vi < 0, wi < 0, for positive data), i = 1, 2, . . . , n − 1. (7.20)

Since Qi (θ) > 0 for all vi , wi > 0, so the positivity of the interpolant (7.6)
depends on the positivity of the cubic polynomial Pi (θ). Thus, the problem
reduces to the determination of appropriate values of vi , wi for which the polyno-
mial Pi (θ) is positive. Now, Pi (θ) can be expressed as follows:

Pi (t) = αiθ
3 + βiθ

2 + γiθ + δi , (7.21)

where
αi = (1 − wi ) fi+1 − (1 − vi ) fi + (di+1 + di )hi ,

βi = wi fi+1 − (3 − 2vi ) fi − (di+1 + di )hi ,

γi = di hi − (3 − vi ) fi ,

δi = fi .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(7.22)

For the strict inequality (for positive data) in (7.6), according to Butt and Brodlie
[8], Pi (θ) > 0 if and only if

(P ′
i (0), P ′

i (1)) ∈ R1U R2. (7.23)
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where

R1 =
{
(a, b) : a >

−3 fi

hi
, b <

3 fi+1

hi

}
, (7.24)

R2 = {(a, b) : 36 fi fi+1(a2 + b2 + ab − 3�i (a + b) + 3�2
i )+

3( fi+1a − fi b)(2hi ab − 3 fi+1a + 3 fi b)+
4hi ( fi+1a3 − fi b3) − h2

i a2b2 > 0}.

⎫
⎬

⎭
(7.25)

We have

P ′
i (0) = fi

hi
(vi − 3) + di ,

P ′
i (1) = di+1 − fi+1

hi
(wi − 3).

Now (7.23) is true when

(P ′
i (0), P ′

i (1)) ∈ R1,

P ′
i (0) >

−3 fi

hi
, P ′

i (1) <
3 fi+1

hi
.

This leads to the following constraints:

vi > mi , wi > Mi . (7.26)

where
mi = Max

{
0,

−hi di

fi

}
, Mi = Max

{
0,

hi di+1

fi+1

}
. (7.27)

Further
(P ′

i (0), P ′
i (1)) ∈ R2

if

36 fi fi+1[φ2
1(ri , ui ) + φ2

2(wi ) + φ1(vi )φ2(wi ) − 3�i (φ1(vi ) + φ2(wi )) + 3�2
i ]+

3[ fi+1φ1(vi ) − yi φ2(wi )][2hi φ1(vi )φ2(wi ) − 3 fi+1φ1(vi ) + 3 fi φ2(wi )]+
4hi [ fi+1φ3

1(vi ) − yi φ
3
2(wi )] − h2

i φ2
1(vi )φ

2
2(wi ) > 0

⎫
⎬

⎭

(7.28)
where

φ1(vi ) = P ′
i (0),

φ2(wi ) = P ′
i (1).

}
(7.29)

This leads to the following:

Theorem 7.2. For a strictly positive data, the rational cubic interpolant (7.6)
preserves positivity if and only if either (7.26) or (7.28) is satisfied.

Remark 7.1. The constraints (7.27) can be further modified to incorporate both
shape-preserving and shape control features. Without loss of generality, one can
find parameters ri and qi satisfying

ri , qi ≥ 1. (7.30)
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such that the constraints (7.26) and (7.27) lead to the following sufficient condi-
tions for the freedom over the choice of ri and qi :

vi = (1 + mi ) ri , wi = (1 + Mi ) qi . (7.31)

One can make the choice of ri and qi to be the greatest lower bound as follows:

ri = 1, qi = 1. (7.32)

This choice satisfies (7.26) and it also provides visually very pleasant results.
Some more practical sufficient conditions, which satisfy (7.26) too, are the
following:

vi = wi = 1 + max (miri , Mi qi ) . (7.33)

Although, these conditions appear to be stronger than (7.31) but their use has
shown quite pleasing results. For more practical and better results, however, we
will utilize the constraints in (7.31) as can be seen in the demonstration Subsec-
tion 7.3.1.

Remark 7.2. Although vi and wi satisfying (7.28) can be determined, it requires
a lot of computations. The alternate choice, in Remark 7.1, provides efficient and
reasonably attractive results as can be seen in the following subsection.

Remark 7.3. This curve-plotting method can be used in both cases when either
di ’s are particularly specified or estimated by some method.

7.3.1 Examples and Discussion
We will assume the derivative approximations as mentioned in Subsection 7.2.2.1.
These approximations are computationally more economical. However, one can
use the derivative choice in Subsection 7.2.2.1, too. The scheme has been imple-
mented on the data set of Table 7.1. Figure 7.1 is the default rational cubic spline
curve for the choice of parameters in (7.17), whereas the Figure 7.2 is its corre-
sponding shape-preserving spline curve for the automatic choice of parameters in
(7.31) and (7.32). The corresponding automatic outputs of the derivative and shape
parameters, for the shape preserving curves in Figure 7.2 is given in Table 7.5. The
pleasing visualization of the data set (see Figure 7.2) is apparent from its counter-
part rational cubic spline default curve; see Figure 7.1. Another example of the
shape-preserving spline for the positivity is shown in Figure 7.9. This is for the
data set in Table 7.6 (the cubic spline version of this data is shown in Figure 7.13.)
The automated values of the shape parameters and the computed derivative values
are shown in Table 7.7.

Further modification in the default positive curve, in Figure 7.2, is also possible.
This can be achieved by assigning appropriate values to ri ’s and qi ’s in the desired
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TABLE 7.5. Computed derivatives and shape parameters for the data in Table 7.1.

i 1 2 3 4 5 6 7

di −7.8500 −4.1500 −1.8792 −0.4153 1.0539 1.4250 1.6000
vi = wi 1.7548 1.9432 3.6845 15.9500 1.4597 1.3333 –
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FIGURE 7.9. The positivity-preserving spline for the positive data in Table 7.6.

TABLE 7.6. A positive dataset.

i 1 2 3 4 5

xi 0 2 3 9 11
yi 0.5 1.5 7 9 13

TABLE 7.7. Computed derivatives and shape parameters for the data in Table 7.6.

i 1 2 3 4 5

di 0.4167 3.8333 4.7619 1.5833 1.5000
vi = wi 6.1111 1.6803 2.0556 1.2308 1.1333
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FIGURE 7.10. The positivity preserving spline for the positive data in Table 7.1: (a) having
ri = 1, qi = 2, ∀i .; (b) having ri = 2, qi = 2, ∀i .; (c) having ri = 5, qi = 5,∀i .; (d)
having violation of shape parameters as ri = −3, qi = −3, ∀i .

regions. Figures 7.10(a)–(d) are for the data set in Table 7.1 for various global
values of ri ’s and qi ’s. For Figure 7.10(a), these values are assumed to be ri =1
and qi = 2. Figure 7.10(b) is the demonstration for the values ri = 2 and qi = 2.
Figure 7.10(c) is plotted for ri = 5 and qi = 5. It can be observed that the gradual
uniform increase in the values of ri ’s and qi ’s is tightening the curve gradually.
Infinitely large values will result to the control polygon. The violation of the con-
straints (7.30) on the parameters ri ’s and qi ’s will result in a curve that may not
preserve the shape. This is displayed in Figure 7.10(d) for ri = −3 and qi = −3.
Figures 7.10(a)–(d) are for global values of ri ’s and qi ’s.

Similarly, the user has freedom to play with values individually when desired.
For example, the curve in Figure 7.9 can be redisplayed, after modification in the
third interval of the curve, as shown in Figure 7.11. This is done for the parameter
values in Table 7.8 and displays a much more natural behavior as compared to
Figure 7.9.
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FIGURE 7.11. The positivity-preserving spline for the positive data in Table 7.1, having
shape parameters as in Table 7.8.

TABLE 7.8. Suitable shape parameters for data set in Table 7.6.

i 1 2 3 4 5

ri 1 1 10 1 –
qi 1 1 5 1 –

7.4 Monotone Spline Interpolation

The rational cubic in Section 7.2 does not preserve the shape of the monotonic
data (see Figure 7.3). Thus, it looks as if ordinary spline schemes do not provide
the desired shape features, and hence some further treatment is required to achieve
a shape preserving spline for monotonic data. This requires an automated compu-
tation of suitable shape parameters and derivative values. To proceed with this
strategy, some mathematical treatment is required which will be explained in the
following paragraphs.

For simplicity of presentation, let us assume monotonic increasing set of data
so that

f1 ≤ f2 ≤ . . . ≤ fn, (7.34)
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or equivalently
�i ≥ 0, i = 1, 2, . . . , n − 1. (7.35)

(In a similar fashion one can deal with monotonic decreasing data.) For a
monotonic interpolant s(x), it is then necessary that the derivative parameters
should be such that

di ≥ 0(di ≤ 0, for monotonic decreasing data), i = 1, 2, . . . , n. (7.36)

Now s(x) is monotonic increasing if and only if

s(1)(x) ≥ 0 (7.37)

for all x ∈ [x1, xn]. For x ∈ [xi , xi+1] it can be shown, after some simplification,
that

s(1) (x) =

6∑

j=1
A jiθ

j−1 (1 − θ)
6− j

[Qi (x)]2 , (7.38)

where

A1,i = di ,

A2,i = 2wi

(
�i − 1

wi
di+1

)
+ di ,

A3,i = 3�i + 2wi

(
�i − 1

wi
di+1

)
+ viwi

(
�i − 1

vi
di − 1

wi
di+1

)

A4,i = 3�i + 2vi

(
�i − 1

vi
di

)
+ viwi

(
�i − 1

vi
di − 1

wi
di+1

)

A5,i = 2vi

(
�i − 1

vi
di

)
+ di+1,

A6,i = di+1.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.39)

The denominator in (7.38), being a squared quantity, is positive; therefore, the
sufficient conditions for monotonicity on [xi , xi+1] are:

A j,i ≥ 0, j = 1, 2, . . . , 6, (7.40)

where the necessary conditions

di ≥ 0and di+1 ≥ 0 (7.41)

are assumed.
If �i > 0 (strict inequality) then following are sufficient conditions for (7.40):

�i − 1
vi

di ≥ 0
�i − 1

wi
di+1 ≥ 0, and

�i − 1
vi

di − 1
wi

di+1 ≥ 0.

⎫
⎪⎬

⎪⎭
. (7.42)

which lead to the following constraints:

vi = li di

�i
, wi = ki di+1

�i
. (7.43)
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where li and ki are positive quantities satisfying

1
li

+ 1
ki

≤ 1. (7.44)

This, together with (7.43) leads to the following sufficient conditions for the free-
dom over the choice of ri and qi :

li ≥ 1 + di+1

di
, ki ≥ 1 + di

di+1
. (7.45)

One can make the choice of ri and qi to be the greatest lower bound as follows:

li = 1 + di+1

di
, ki = 1 + di

di+1
. (7.46)

This choice satisfies (7.44). Further simplification of (7.43) and (7.46) leads to the
following sufficient conditions for monotonicity:

vi = di + di+1

�i
, wi = di + di+1

�i
. (7.47)

This choice satisfies (7.44) and it also provides visually very pleasant results, as
can be seen in Subsection 7.4.1. However, one can find some positive quantities ri
and qi such that (7.45) can be rewritten as:

li =
(

1 + di+1

di

)
ri , ki =

(
1 + di

di+1

)
qi . (7.48)

where
ri , qi ≥ 1. (7.49)

Substitution of parameters in (7.47) into (7.43) yields the sufficient condition to
the following:

vi =
(

di + di+1

�i

)
ri , wi =

(
di + di+1

�i

)
qi . (7.50)

The parameters ri and qi will help out the user in a further modification of the
automated monotone curve.

It should be noted that if �i = 0, then it is necessary to set di = di+1 = 0, and
thus

s(x) = fi = fi+1 (7.51)

is a constant on [xi , xi+1]. Hence the interpolant (7.6) is monotonic increasing
together with the conditions (7.41) and (7.47). For the case where the data is
monotonic but not strictly monotonic (i.e., when some �i = 0), it would be nec-
essary to divide the data into strictly monotonic parts. If we set di = di+1 = 0
whenever �i = 0, then the resulting interpolant will be C0 at break points. The
above discussion can be summarized as:

Theorem 7.3. Given the conditions (7.36) on the derivative parameters, (7.47)
and (7.50) are sufficient conditions for the interpolant (7.6) to be monotonic
increasing.
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TABLE 7.9. Computed derivatives and shape parameters for the data in Table 7.2.

i 1 2 3 4 5 6 7 8 9 10 11

di 0 0 0 0 0 0 1.0833 24.0833 25.0000 18.3333 12.5000
vi = wi – – – – – 2.1667 11.1852 1.4024 8.6667 0.2333 –

7.4.1 Examples and Discussion
As in Section 7.3, we will assume the derivative approximations as mentioned in
Subsection 7.2.2.1. The scheme has been implemented on the data set of Table 7.2.
Figure 7.3 is the default rational cubic spline curve for the choice of parameters
in (7.17), whereas Figure 7.4 is its corresponding shape-preserving spline curve
for the automatic choice of parameters in (7.47). The corresponding automatic
outputs of the derivative and shape parameters, for the shape-preserving curves
in Figure 7.4 is given in Table 7.9. The pleasing visualization of the data set (see
Figure 7.4) is apparent from its counterpart rational cubic spline default curve; see
Figure 7.3.

Further modification in the default monotonic curve, in Figure 7.4, is also pos-
sible. This can be achieved by assigning appropriate values to ri ’s and qi ’s in
the desired regions. Figures 7.12(a)–(d) are for the data set in Table 7.2 for var-
ious global values of ri ’s and qi ’s. For Figure 7.12(a), these values are assumed
to be ri = 1 and qi = 2. Figure 7.12(b) is the demonstration for the values
ri = 2 and qi = 2. Figure 7.12(c) is plotted for ri = 5 and qi = 5. It can
be observed that the gradual uniform increase in the values of ri ’s and qi ’s is
tightening the curve gradually. Infinitely large values will result to the control
polygon. The violation of the constraints (7.30) on the parameters ri ’s and qi ’s
will result in a curve that may not preserve the shape. This is displayed in Fig-
ure 7.12(d) for ri = 0.1 and qi = 0.1. Figures 7.12(a)–(d) are for global values
of ri ’s and qi ’s. Similarly, the user has freedom to play with values individually
when desired.

7.5 Convex Spline Interpolation

Figures 7.1 and 7.13 are the default curves to the positive and convex data in
Table 7.1 and Table 7.10, respectively. The data in Table 7.10 is data from a func-
tion f (x) = 10/x2. It can be seen that the ordinary spline curves do not guarantee
to preserve the shape.

As was seen in Section 7.2, Figures 7.5 and 7.6, for the data in Table 7.1, are
for the demonstration of global shape control vi = wi = 25, 500, ∀i , respec-
tively. One can see that the increasing global values of the shape parameters grad-
ually pull the curve toward the control polygon and hence the default curve moves
toward the data-preserved curve. But, this way the curve is getting tightened every-
where, which may not be desired.
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FIGURE 7.12. The monotonicity-preserving spline for the positive data in Table 7.2: (a)
having ri = 1, qi = 2, ∀i .; (b) having ri = 2, qi = 2, ∀i .; (c) having ri = 5, qi = 5, ∀i .;
(d) having violation of shape parameters as ri = 0.1, qi = 0.1, ∀i .

Another alternate is the allocation of values to the shape parameters accord-
ing to the nature of the curve behavior over various intervals. For example, the
curves in Figures 7.7 and 7.14 are for the shape parameter values in Tables 7.3 and
7.11 (corresponding to the data in Tables 7.1 and 7.10), respectively. These curves
seem to visually satisfy the shapes preserved. That is, one can note that the curves
seem to preserve the inherent features of the data in Tables 7.1 and 7.10. But these
shapes were achieved after making various experiments for different values of
parameters, which is really time consuming and not very accurate and, therefore,
is not recommended for practical applications too.

The problems, mentioned in the above paragraphs, are the basic motivation for
this section. These problems will be removed and an automated solution will be
presented. Some constructive approaches are adopted in the coming sections. The
user will visualize convex data sets in an automated way.

The rational cubic, in Section 7.2, does not preserve the shape of the convex
data. Thus, it looks as if ordinary spline schemes do not provide the desired
shape features, and hence some further treatment is required to achieve a
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FIGURE 7.13. The default rational cubic spline for the convex data in Table 7.2.

TABLE 7.10. A convex data set.

i 1 2 3 4 5

xi 1 2 4 5 10
fi 10 2.5 0.625 0.4 0.1

shape-preserving spline for convex data. This requires an automated computa-
tion of suitable shape parameters and derivative values. To proceed with this
strategy, some mathematical treatment is required that will be explained in the
following paragraphs.

For simplicity of presentation, let us assume a strictly convex set of data so that

�1 < �2 < . . . < �n−1. (7.52)

In a similar fashion, one can deal with a concave data so that

�1 > �2 > . . . > �n−1. (7.53)

For a convex interpolant s(x), it is then necessary that the derivative parameters
should be such that

d1 < �1 < . . . < �i−1 < di < �i < . . . < �n−1 < dn, (7.54)
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FIGURE 7.14. The rational cubic spline with various choices of shape parameters as men-
tioned in Table 7.11.

TABLE 7.11. Suitable shape parameters for Akima’s data set.

i 1 2 3 4

vi 3 10 3 12
wi 3 13 3 20

and

d1 > �1 > . . . > �i−1 > di > �i > . . . > �n−1 > dn, for concave data.

Now s(x) is convex if and only if

s(2)(x) ≥ 0, (7.55)

for all x ∈ [x1, xn]. For x ∈ [xi , xi+1] it can be shown, after some simplification,
that

s(2)(x) =
8∑

j=1

B j,iθ
j−1(1 − θ)8− j

hi [Qi (x)]3 , (7.56)
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where

B1,i = A2,i − A1,i (2vi − 1) ,
B2,i = 2A3,i − A2,i (vi − 2) − A1,i (vi + 4wi ) ,

B3,i = 3A4,i + 3A3,i − 3wi A2,i − 3A1,i (wi + 2) ,
B4,i = 4A5,i + 4A4,i (vi + 1) + A3,i (vi − 2wi ) − A2,i (2wi + 5) − 5A1,i ,
B5,i = 5A6,i + A5,i (2vi + 5) + A4,i (2vi − wi ) − A3,i (wi − 4) − 4A2,i ,

B6,i = 3A6,i (vi + 2) + 3vi A5,i − 3A4,i − 3A3,i ,
B7,i = A6,i (4vi + wi ) + A5,i (wi − 2) − 2A4,i ,

B8,i = A6,i (2wi − 1) − A5,i ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.57)

Since the denominator in (7.56), for the selection of vi , wi > 0, is positive, then
the sufficient conditions for convexity on [xi , xi+1] are:

vi , wi > 0, B j,i ≥ 0, j = 1, 2, . . . , 8, (7.58)

where the necessary conditions

�i − di ≥ 0and di+1 − �i ≥ 0 (7.59)

are assumed. After some simplifications, one can rewrite the first and the last equa-
tions, from (7.57), as follows:

B1,i = 2 {(wi − vi ) �i + vi (�i − di ) − (di+1 − di )} ,
B8,i = 2 {(wi − vi ) �i + wi (di+1 − �i ) − (di+1 − di )} .

}
. (7.60)

If �i − di > 0 and di+1 − �i > 0 (strict inequalities), then the following are
sufficient conditions for (7.60):

vi = wi ,
vi (�i − di ) − (di+1 − di ) ≥ 0,

wi (di+1 − �i ) − (di+1 − di ) ≥ 0.

⎫
⎬

⎭
. (7.61)

These are equivalent to the followings constraints:

vi = wi = li + max
(

di+1 − di

�i − di
,

di+1 − di

di+1 − �i

)
, (7.62)

where li are non-negative quantities satisfying

li ≥ 0. (7.63)

After some manipulations, it is trivial to show that the sufficient conditions (7.58),
for (7.56), are also sufficient for (7.54). Since

di+1 − �i

�i − di
+ �i − di

di+1 − �i
≥ max

(
di+1 − di

�i − di
,

di+1 − di

di+1 − �i

)
. (7.64)
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Therefore, the sufficient conditions (7.62) for convexity take the following form:

vi = wi = li + di+1 − �i

�i − di
+ �i − di

di+1 − �i
, li ≥ 0. (7.65)

However, the following choice of parameters

vi = wi = li + max
(

di+1 − di

�i − di
,

di+1 − di

di+1 − �i

)
, li = 0, (7.66)

will be considered for practical implementation of default curve design. This
choice satisfies (7.62) and it also provides acceptable results.

Remark 7.4. The default value of the parameters li , being taken as zero, leads to
the default constraints:

vi = wi = max
(

di+1 − di

�i − di
,

di+1 − di

di+1 − �i

)
, (7.67)

provides visually pleasing results and produces automated curve interpolation.
Further modification is achieved by taking other positive values in various
intervals.

Remark 7.5. It should be noted that if �i − di = 0 or di+1 − �i = 0, then it is
necessary to set di = di+1 = �i . The interpolant then will be linear in that region,
i.e.,

s(x) = (1 − θ) fi + θ fi+1. (7.68)

It should also be noted that if �i = 0, then it is necessary to set di = di+1 = 0,
and thus

s(x) = fi = fi+1 (7.69)

is a constant on [xi , xi+1]. Hence the interpolant (7.6) is convex together with the
conditions (7.65). For the case, where the data is convex but not strictly convex,
it would be necessary to divide the data into strictly convex parts. If we set di =
di+1 = 0 whenever �i = 0, then the resulting interpolant will be C0 at break
points.

The above discussion can be summarized as follows:

Theorem 7.4. Given the conditions (7.54) on the derivative parameters and the
data, the constraints (7.65) are the sufficient conditions for the interpolant (7.6) to
be convex.

7.5.1 Demonstration
We will assume the derivative approximations as mentioned in Subsection 7.2.2.2.
The scheme has been implemented on the data set of Table 7.10. Figure 7.13 is the
default rational cubic spline curve for the choice of parameters in (7.17), whereas
Figure 7.15 is its corresponding shape-preserving spline curve for the automatic
choice of parameters in (7.67).
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FIGURE 7.15. The default shape-preserving spline for the convex data in Table 7.10.

7.6 Summary

A rational cubic interpolant with two families of shape parameters has been
utilized to obtain C1 positivity-, monotonicity- and convexity-preserving interpo-
latory spline curves. The shape constraints are restricted on shape parameters to
assure the shape preservation of the data. For the C1 interpolant, the choices on
the derivative parameters have been defined. The solution to the shape-preserving
spline exists and provides a unique solution.

In addition to the default curve choices, extra degree of freedoms have been
provided to the users. This will help for further satisfaction of the default design
curves.

The rational spline scheme has been implemented successfully and it demon-
strates visually pleasant and accurate results. The user is not worried about strug-
gling and looking for some appropriate choice of parameters as in the case of an
ordinary rational spline having some control on the curves.

7.7 Exercises

1. Extend the curve scheme in Section 7.2 to a parametric curve scheme and write
a program to demonstrate the effect of the shape parameters for CAD/CAM
purposes. (Hint: The reader is referred to Chapter 3 for this purpose)



References 155

2. Extend the curve scheme in Section 7.3 to a parametric curve scheme such that
it preserves the positive data.

3. Extend the curve scheme in Section 7.4 to a parametric curve scheme such that
it preserves the monotonic data.

4. Extend the curve scheme in Section 7.5 to a parametric curve scheme such that
it preserves the convex data.

5. Write program to visualize the results of the scheme in Exercises 2–4.
6. Extend the curve scheme in Section 7.2 to a C2 curve scheme.
7. Extend the curve scheme in Section 7.3 to a C2 curve scheme.
8. Extend the curve scheme in Section 7.4 to a C2 curve scheme.
9. Extend the curve scheme in Section 7.5 to a C2 curve scheme.
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8
Visualization of Shaped Data by Cubic
Spline Interpolation

Abstract. This chapter reiterates the subject of the previous chapter. Instead of a rational
cubic model, a polynomial cubic spline has been presented here for the same objective.
A piecewise cubic spline has been introduced to preserve the shape of the data when it is
convex, monotone or positive. The spline representation is interpolatory and applicable to
the scalar valued data. The shape parameters, in the description of the cubic, have been
constrained in such a way that they control the shape of the curve to avoid any noise. As
far as visual smoothness is concerned, the curve scheme under discussion is GC1. Thus the
continuity constraints have been relaxed from C1 to GC1.

8.1 Introduction

This chapter is a continuation of the previous chapter. The difference arises
mainly in two ways: (i) the interpolant used is a piecewise cubic polynomial, and
(ii) visual smoothness is of the curve scheme under discussion, which is GC1.
Thus, the continuity constraints have been relaxed from C1 to GC1 to obtain a
shape-preserving cubic spline.

The early work in this chapter was reported in [17] and further extension of
the preliminary work was achieved in [18]. The shape-preserving techniques pre-
sented here are an economical alternative to their counterparts in the previous
chapter as well as in [1–16]. The methods under consideration in this chapter
have the following important and advantageous features that no additional points
(knots) need to be supplied. In contrast, the cubic interpolation method of Brodlie
and Butt [1, 2] requires the introduction of additional knots when used as shape-
preserving methods. Moreover, existing algorithms such as the de Castlejau algo-
rithm can be used for rapid computations.

The chapter is organized so that Section 8.2 describes the Hermite-like cubic
interpolation. An introduction to shape-preserving is provided in Section 8.3. The
problems of convexity, monotonicity and positivity are discussed in Sections 8.4,
8.5 and 8.6, respectively. Section 8.7 is devoted to the extension of positivity when
a data is above an arbitrary line. Section 8.8 summarizes the chapter.

157
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8.2 Cubic Interpolant

Let (xi , fi ) , i = 1, 2, . . . , n, be a given set of data points, where x1 < x2 < · · · <
xn . Let

hi = xi+1 − xi , �i = fi+1 − fi

hi
, i = 1, 2, . . . , n − 1. (8.1)

Consider the following piecewise cubic function:

S (x) ≡ Si (x) = Ui (1 − θ)3 + 3Viθ (1 − θ)2 + 3Wiθ
2 (1 − θ) + Ziθ

3, (8.2)

where
θ = x − xi

hi
. (8.3)

To make the function (8.2) GC1, one needs to impose the following interpolatory
properties:

S (xi ) = fi , and S (xi+1) = fi+1, S(1) (xi ) = di

ri
, and S(1) (xi+1) = di+1

ri
,

(8.4)
which provide the following manipulations:

Ui = fi , Zi = fi+1, Vi = fi + hi di

3ri
, and Wi = fi+1 − hi di+1

3ri
, (8.5)

where S(1)(x) denotes derivative with respect to x and di denotes derivative value
given at the knot xi . This leads the piecewise cubic (8.2) to the following piecewise
Hermite-like interpolant S ∈ C1 [x1, xn]:

S (x) ≡ Si (x) , (8.6)

where

Si (x) = fi (1 − θ)3 + 3Viθ (1 − θ)2 + 3Wiθ
2 (1 − θ) + fi+1θ

3. (8.7)

The parameters ri ’s, and the derivatives di ’s are to be chosen such that the shape
of the data is preserved by the interpolant (8.6). One can note that when ri = 1,
the cubic function obviously becomes the standard cubic Hermite polynomial.
Variation for the values of ri ’s control (tighten or loosen) the curve in different
pieces of the curve. When ri → 0, it is simple to see that the curve gets tightened
in the corresponding interval. This interval shape control behavior is desired as
a constraint so that the interpolant automatically becomes convex to the convex
data, monotone to monotone data and positive to positive data.

It should be noted that the shape control analysis is valid only if the bounded
derivative values are assumed. In most applications, the derivative parameters
{di } are not given and hence must be determined either from the given data
(xi , fi ) , i = 1, 2, . . . , n, or by some other means. In this chapter, they are com-
puted exactly in the same way as in Section 8.8.2 of the previous chapter. The
smoothness of the interpolant (8.6), hence would be GC1.
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FIGURE 8.1. Cubic Hermite spline curve to the data in Table 8.1.

TABLE 8.1. A convex data set.

x −4 −3.5 −2 0 2 3.5 4
y 5 0 −3.5 −3.5 −3.5 0 5

TABLE 8.2. A convex data set.

x −9 −8 −4 0 4 8 9
y 7 5 3.5 3.25 3.5 5 7

TABLE 8.3. A monotone data set.

x 0 6 10 29.5 30
y 0 15 15 25 30

TABLE 8.4. A monotone data set.

x 0.0 1.0 1.7 1.8
y 0.25 1.00 11.10 25

8.2.1 Demonstration
For the demonstration of this GC1 Hermite-like cubic spline scheme, we choose
the following choice of shape parameters as the default value:

ri = 1. (8.8)

However, other values of shape parameters can also be allocated for the
achievement of a controlled curve. Figures 8.1 and 8.3 are the default curves to
the convex data in Table 8.1 and Table 8.2, respectively. Figures 8.5 and 8.7 are
the default curves to the monotone data in Table 8.3 and Table 8.4, respectively.
Figures 8.9 and 8.11 are the default curves to the positive data in Table 8.5 and
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TABLE 8.5. A positive data set.

x 2 3 7 8 9 13 14
y 10 2 3 7 2 3 10

TABLE 8.6. A positive data set.

x 0 2 4 10 28 30 32
y 20.8 8.8 4.2 0.5 3.9 6.2 9.6

Table 8.6, respectively. Figure 8.13 is the default curve to the data that lie above a
line f = x

2 + 1. It can be seen that the ordinary spline curve does not guarantee to
preserve the shape. Some odd behavior (noise) can be seen in the presentation of
the curve.

8.3 Shape-Preserving Interpolation

The cubic spline method, described in the previous Section 8., has deficiencies
as far as the shape-preserving issue is concerned. For example, the cubic in
Section 8.2 does not preserve the shape of the data (see Figures 8.1, 8.3, 8.5, 8.7,
8.10, 8.12 and 8.14). Very clearly, these curves do not preserve the shape of the
data. It is necessary to assign appropriate values to the shape parameters so that
they generate a data-preserved shape. Thus, it looks as if ordinary spline schemes
do not provide the desired shape features. Some further treatment is required to
achieve a shape-preserving spline for shape-preserving data.

The proposed method, which is effective, useful and is the focus of this chapter,
is the automated generation of shape-preserving curves. This requires automated
computation of suitable shape parameters. To proceed with this strategy, some
mathematical treatment is needed, which is explained in the following Section 8.

8.4 Convex Cubic Spline

For given points:
(x1, f1) , (x2, f2) , . . . , (xn, fn)

with
x1 < x2 < · · · < xn,

let us assume convex set of data so that

�1 ≤ �2 ≤ · · · ≤ �n−1. (8.9)

Similarly, one can assume concave data so that

�1 ≥ �2 ≥ · · · ≥ �n−1.
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In this chapter we develop necessary and sufficient conditions on piecewise cubics
under which GC1 convex interpolation is preserved. We describe the cubic spline
S on the grid x1 < x2 < · · · < xn . The key idea to preserve convexity using S(x),
is to assign suitable values to ri in each interval. But, first of all, we determine
conditions for ri , which guarantee convexity.

For a convex interpolant S(x), it is then necessary that the derivative parameters
should be

d1 ≤ �1 ≤ d2 ≤ �2 ≤ · · · ≤ �n−1 ≤ dn . (8.10)
(d1 ≥ �1 ≥ d2 ≥ �2 ≥ · · · ≥ �n−1 ≥ dn , for concave data).

Now S(x) is convex if and only if

S(2) (x) ≥ 0, x1 ≤ x ≤ xn . (8.11)

For x ∈ [x1, xn], it can be shown, after some simplification, that

S(1) (x) =
3∑

j=1

A j,i (1 − θ)3− j θ j−1,

where
A1,i = di

ri
,

A2,i = 3�i −
(

di
ri

+ di+1
ri

)
,

A3,i = di+1
ri

.

⎫
⎪⎪⎬

⎪⎪⎭
(8.12)

and

S(2) (x) =
2∑

j=1

B j,i (1 − θ)2− j θ j−1,

where

B1,i =
[

6�i − 2
(

2di

ri
+ di+1

ri

)]
/hi , (8.13)

B2,i =
[

2
(

di

ri
+ 2di+1

ri

)
− 6�i

]
/hi (8.14)

The sufficient conditions for convexity on [x1, xn] are:

B j,i ≥ 0, j = 1, 2,

where the necessary conditions (8.10) are assumed.
If �i > 0 (strict inequality) then following are sufficient conditions for (8.13)

and (8.14):

ri = 2 (di + di+1)

3�i
, (8.15)

We will consider this as the default automatic choice. This choice satisfies (8.11)
and produces pleasing results.
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FIGURE 8.2. Shape-preserving cubic spline curve to the data in Table 8.1.

It should be noted that if �i = 0, then it is necessary to set di = 0 = di+1, and
thus

S (x) = fi = fi+1

is a constant on [x1, xn]. Hence the interpolant (8.7) is convex together with the
conditions (8.10) and (8.15). For the case where the data is convex but not strictly
convex (i.e., when some �i = 0) it would be necessary to divide the data into
strictly convex parts. If we set di = 0 = di+1 whenever �i = 0, then the resulting
interpolant will be C0 at break points. This leads to the following:

Theorem 8.1. The cubic polynomial (8.7) preserves convexity if and only if
(8.15) is satisfied.

8.4.1 Demonstration
The first example is that of data given in Table 8.1. Application of the Hermite
cubic spline method (see Section 8.2) produces the curve in Figure 8.1. This curve
shows noise, which is misguiding. We now apply piecewise cubic of Section 8.3
to the same data. Figure 8.2 is produced by the default settings of the parameters
ri satisfying the convex conditions derived in Section 8.4. One can see that the
convexity nature of the data is preserved in a pleasing way.
The second example regards data taken at random. The curve in Figure 8.3 is due
to the Hermite cubic spline method (see Section 8.2). This is not a desired display
as some unnecessary oscillations on the curve are also noticed in a certain time
limit. Figure 8.4 is produced by the default settings of the parameters ri satisfying
the convex conditions derived in Section 8.4. One can observe that the curve is
convex and visually pleasing.

8.5 Monotone Cubic Spline

For given points:
(x1, f1) , (x2, f2) , . . . , (xn, fn)
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FIGURE 8.3. Cubic Hermite spline curve to the data in Table 8.2.

FIGURE 8.4. Shape preserving cubic spline curve to the data in Table 8.2.

with
x1 < x2 < · · · < xn,

Let us assume monotonic increasing set of data so that

f1 ≤ f2 ≤ · · · ≤ fn

or equivalently
�i ≥ 0, i = 1, 2, . . . , n − 1.

In a similar fashion, one can deal with a monotonic decreasing data.
In this section we develop necessary and sufficient conditions on piecewise

cubics S(x) to assign suitable values to ri in each interval under which GC1

monotone interpolation is preserved. For a monotone interpolant S(x), it is then
necessary that derivative parameters should be such that

di ≥ 0, i = 1, 2, . . . , n for monotonic increasing data,

di ≤ 0, i = 1, 2, . . . , n for monotonic decreasing data. Now S(x) is monotonic
increasing if and only if

S(1)(x) ≥ 0, x1 ≤ x ≤ xn .
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FIGURE 8.5. Cubic Hermite spline curve to the data in Table 8.3.

The sufficient conditions for monotonic on [x1, xn] are

A j,i ≥ 0, j = 1, 2, 3.

where the necessary conditions

di ≥ 0 and di+1 ≥ 0,

are assumed. If �i > 0, then the following are the sufficient conditions for (8.12):

ri >
di + di+1

3�i
. (8.16)

Theorem 8.2. The cubic polynomial (8.7) preserves monotonicity if and only if
(8.16) is satisfied.

8.5.1 Demonstration
Let us take the example of monotone data as in Table 8.3. Figure 8.5 is produced
by applying the Hermite cubic spline method on this monotone data, which loses
the monotonicity. Figure 8.6 shows the monotone curve through monotone data in
Table 8.3 using the monotone cubic function of Section 8.5.
Secondly, we consider a monotone set of data from Sakai and Schmidt [10] in
Table 8.4.
Figure 8.7 is produced by applying the Hermite cubic spline method which
loses monotonicity. Figure 8.8 is produced using the monotone cubic function of
Section 8.5 that preserves the shape of data in Table 8.4.

8.6 Positive Cubic Spline

The problem of positive interpolation can be described as follows: For given data
points

(x1, f1) , (x2, f2) , . . . , (xn, fn)
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FIGURE 8.6. Shape-preserving cubic spline curve to the data in Table 8.3.

FIGURE 8.7. Cubic Hermite spline curve to the data in Table 8.4.

with
x1 < x2 < · · · < xn,

and
f1 > 0, f2 > 0, . . . , fn > 0,

construct an interpolant S(x) which is positive on the whole interval [x1, xn],
that is,

S(x) > 0, x1 ≤ x ≤ xn .

The key idea to preserve positivity using S(x) is to assign suitable values to ri ’s
in each interval. We would like to determine conditions for ri which guarantee
positivity. Since S(x) > 0 for all Vi , Wi > 0, so we have the following:

Vi > 0 if ri >
−hi di

3 fi
,
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FIGURE 8.8. Shape-preserving cubic spline curve to the data in Table 8.4.

and
Wi > 0 if ri >

hi di+1

3 fi+1
.

Thus, the sufficient conditions on piecewise cubic S(x) under which GC1 positive
interpolant is preserved are as follows:

ri > max
{−hi di

3 fi
,

hi di+1

3 fi+1

}
. (8.17)

Theorem 8.3. The cubic polynomial (8.7) preserves positivity if and only if
(8.17) is satisfied.

8.6.1 Demonstration
For this demonstration, consider the positive data in Table 8.4. This data has come
from the known volume of NaOH taken in a beaker and its conductivity was deter-
mined. An HCL solution was added from the burette in steps, drop by drop. After
each addition, the volume of HCL(x) was stirred by gentle shaking, and con-
ductance (y) was determined as shown in Table 8.4. Application of the Hermite
cubic spline method produces the curve in Figure 8.7. This curve shows the neg-
ative value of conductance, which is ridiculous. This flaw is recovered nicely in
Figure 8.9 using the positivity-preserving cubic scheme of Section 8.6.

Other positive data (W shaped) is shown in Table 8.5. Application of the
Hermite cubic spline method produces the curve in Figure 8.10. This curve shows
the negative value of conductance, which is ridiculous. This flaw is recovered
nicely in Figure 8.11 using the positivity-preserving cubic scheme of Section 8.6.

We consider another positive set of data from Butt and Brodlie [2] in Table 8.6.
Figure 8.12 is produced by applying the Hermite cubic spline method, which loses
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FIGURE 8.9. Positivity-preserving cubic spline curve to the data in Table 8.4.

FIGURE 8.10. Cubic Hermite spline curve to the data in Table 8.5.

the shape of data in Table 8.6. Figure 8.13 shows the positive curve through posi-
tive data in Table 8.6 using positive interpolation of Section 8.6.

8.7 Extension of Positive Cubic Spline

Let (xi , fi ), i = 1, 2, . . . , n be the given data points that lie above any straight
line f (x) = mx + c, that is fi > mxi + c for all i = 1, 2, . . . , n. We require

S(x) ≡ Si (x) > mxi + c.
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FIGURE 8.11. Shape-preserving cubic spline curve to the data in Table 8.5.

FIGURE 8.12. Cubic Hermite spline curve to the data in Table 8.6.

We assume that m > 0. The case m < 0 can be handled in a similar way. In each
interval mx + c can be expressed as:

ai (1 − θ) + biθ

where
ai = mxi + c, bi = mxi+1 + c.

We thus require

Si (x) > ai (1 − θ) + biθ, i = 1, 2, . . . , n.
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FIGURE 8.13. Shape-preserving cubic spline curve to the data in Table 8.6.

So we require

Ui = fi (1−θ)3 +3Viθ(1−θ)2 +3Wiθ
2(1−θ)+ fi+1θ

3 −{ai (1−θ)+biθ} > 0.
(8.18)

It can be expressed as

Ui = ( fi − ai )(1 − θ)3 + (3Vi − 2ai − bi )θ(1 − θ)2

+ (3Wi − ai + 2bi )θ
2(1 − θ) + ( fi+1 − bi )θ

3 > 0.

Since
fi − ai > 0 and fi+1 − bi > 0,

so Ui > 0 if and only if

3Vi − 2ai − bi > 0 and 3Wi − ai − 2bi > 0.

3Vi − 2ai − bi > 0 if

ri >
−hi di

3 fi − 2ai − bi
and 3Wi − ai − 2bi > 0 if

ri >
hi di+1

3 fi+1 − ai − 2bi
.

The above discussion leads to the following theorem.

Theorem 8.4. The polynomial (8.7) lies above the given straight line if and
only if

ri > max
{ −hi di

3 fi − 2a1 − bi
,

hi di+1

3 fi+1 − ai − 2bi

}
.
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TABLE 8.7.

x 2 3 7 8 9 13 14
f 12 4.5 6.5 12 7.5 9.5 18

FIGURE 8.14. Cubic Hermite spline curve to the data in Table 8.7.

FIGURE 8.15. Shape-preserving cubic spline curve to the data in Table 8.7.

8.7.1 Demonstration
We finally consider the data in the Table 8.7 where f -values lie above the line

f = x
2

+ 1.

Figure 8.14 is produced using the cubic Hermite spline. This curve does not lie
above the line f = x

2 + 1. This flaw is recovered nicely in Figure 8.15 using the
scheme of Section 8.7.



References 171

Remark 8.1. These methods can be used in both cases when either di ’s are par-
ticularly specified or estimated by some method. We propose the arithmetic mean
approximation method [3] for the practical implementation in this chapter.

8.8 Summary

A piecewise cubic interpolant, in a generalized form, has been utilized to obtain
a GC1 convexity-, monotonicity- and positivity-preserving curve methods. Data-
dependent shape constraints are derived on shape parameters to assure the shape
preservation of the data. Choice of the derivative parameters is considered to be
the approximation through arithmetic choice.

The proposed curve schemes are visually smooth enough and present reason-
ably acceptable demonstrations of the shape of the data, but a higher degree of
smoothness, while stitching the pieces of curves, may enhance the visual display.

8.9 Exercises

1. Extend the curve scheme in Section 8.2 to a parametric curve scheme and write
a program to demonstrate the effect of the shape parameters for CAD/CAM
purposes.

2. Extend the curve scheme in Section 8.4 to a parametric curve scheme such that
it preserves the convex data.

3. Extend the curve scheme in Section 8.5 to a parametric curve scheme such that
it preserves the monotonic data.

4. Extend the curve scheme in Section 8.6 to a parametric curve scheme such that
it preserves the positive data.

5. Write a program to visualize the results of the scheme in Exercises 4–6.
6. Extend the curve scheme in Section 8.2 to a C1 curve scheme.
7. Extend the curve scheme in Section 8.4 to a C1 curve scheme.
8. Extend the curve scheme in Section 8.5 to a C1 curve scheme.
9. Extend the curve scheme in Section 8.6 to a C1 curve scheme.
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9
Approximation with B-Splines Curves

Abstract. B-spline curves have been used to approximate the functional data. Two curve
approximation techniques are presented here. One scheme is based on a deterministic
approach using quadratic B-splines. The other scheme uses a genetic algorithm in its for-
mulation where the B-spline can have any order. Both schemes automatically compute data
points to minimize errors.

9.1 Introduction

Curve approximation [6,8–14] is all about finding accurate locations of data points
from the given curve. It is an important area of computer graphics and can be
utilized in computer vision and imaging applications too. B-splines curves [4] are
popular models for curve design and can be defined by their degrees and control
points. They have been used here to present curve approximating techniques. Both
of the schemes presented in this chapter automatically compute data points to
minimize errors. These techniques can be useful for efficient storage of geometric
shapes in any applications of graphics, vision and imaging. The first technique
presented is based on a deterministic approach; it uses a quadratic B-spline curve
for approximating functions or functional data. The second scheme is based on
a nondeterministic approach, namely, a genetic algorithm. It has the freedom to
utilize any degree B-spline formulation.

In the first technique [12] presented here, quadratic B-spline data points are
computed by exploiting the properties of its knots. This technique consists of three
steps of approximation. Step 1 involves computation/plotting of opening angles.
In Step 2, knots are inserted at appropriate locations, which bring approxima-
tion error within specified threshold limits. Step 3 is a further optimization of
approximation results by changing knot positions. A general quadratic B-spline
curve through these data points (control points and knots) would be an approx-
imating curve. Demonstrated results will show that very precise approximation
can be achieved with quite lesser data points. This curve approximation technique
is simple, efficient and robust for any parametric curve(s). It does not require an
extensive search for data points. Data points once computed are not discarded.

173
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The second technique is also based on B-spline formulation [13,14]; it has more
freedom and can use any degree B-spline formulation for curve representation.
A genetic approach has been adopted to locate appropriate B-spline knots so that
the approximation error is minimized.

The rest of the chapter is organized as follows. Section 9.2 gives a general
description of quadratic B-splines. Section 9.3 highlights properties of knots
together with the approximating technique (in three steps). Section 9.4 describes
the technique based on a genetic algorithm (GA). Both schemes have been illus-
trated with examples. Section 9.5 summarizes the chapter.

9.2 B-Splines

The general expression for calculation of any coordinate position along a B-spline
curve in a blending function formulation [5] can be given as:

P (u) =
n∑

k=0

pk Bk,d (u) ,umin ≤ u ≤ umax, 2 ≤ d ≤ n + 1 (9.1)

In Equation (9.1) above, pk is an input set of n + 1 control points. The B-spline
blending function Bk,d are polynomials of degree d − 1. Blending functions for
B-spline curves can be defined by the Cox-deBoor recursion formulas [3]:

Bk,d (u) = u − uk

uk+d−1 − uk
Bk,d−1 (u) + uk+d − u

uk+d − uk+1
Bk+1,d−1 (u)

Bk,1 (u) =
{

1, if uk ≤ u < uk+1
0, otherwise

⎫
⎪⎪⎬

⎪⎪⎭
(9.2)

Each blending function is defined over d subintervals of the total range of u. We
can choose any values for the subinterval endpoints u j satisfying the relation u j ≤
u j+1.

9.3 Deterministic Approach

In this section, we assign d = 3, umin = 0 & umax = 1 for the quadratic B-spline
(QBS) curves that would be used for approximation of given curves. The range of
parameter u is divided into n + d + 1 knot values labeled as {u0, u1, . . ., un+d}
and the resulting QBS curve is defined in the range from knot value ud−1 up to
un+1. For the uniform QBS, the spacing between knots remains constant as in
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Figure 9.1 shows QBS with five control points and
uniform knot spacing. For the open uniform QBS, the knot spacing is uniform
except at the ends where knot values are repeated d times as given below:

{0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} for d = 3 and n = 5 (9.3)
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P0

P2

P1

P4

P3

u2

u3

u5

u4

FIGURE 9.1. QBS with five control points (n = 4). The curve is defined between knot u2
to u5.

For a nonuniform QBS, we can choose unequal knot spacing and multiple knot
values. Similarly, in open nonuniform QBS (used in this chapter), knot spacing is
nonuniform, and at the ends knot values are repeated d times. We observe follow-
ing properties of QBS knots:

• Knots are the interpolating points along the curve.
• Only one knot lies between two successive control points.
• The QBS curve touches its convex hull at each knot position.
• The opening angle along the QBS curve maximizes at its knot positions

(Section 9.3).

9.3.1 Approximation Technique
The presented approximation technique is developed by exploiting the QBS knot
properties. This technique is suitable for approximation of any spline/mathematical
curve(s). The QBS approximation is a three-step process.

9.3.1.1 Initial Data Points (Step 1)

Curvature measure, based on opening angles of each point along the curve, is used
for analysis/detection of initial knot positions. Opening angle, θ ∈ |0, π |, for any
curve point Ci can be computed as:

θ = arccos
a2 + b2 + c2

2ab
(9.4)

where a, b and c are the distances |Ci − Ci−w|, |Ci − Ci+w| and |Ci−w − Ci+w|,
respectively, for w ≤ i ≤ n − w, where w is the window size and n is the number
of points in a given curve. The value of w depends on the smoothness of the
given curve. We use w = 1 as the curve under approximation, which is very
smooth. Figure 9.2(a) shows a plot of opening angle θ for a QBS of Figure 9.1.
Maxima points of this plot, including two endpoints of given curve, are selected
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θ (rad)

Parameter Values (ui )

3.2

3.1

3

2.9

2.8
0 0.2 0.60.4 0.8 1

(b)(a)

Original Curve

Detected Knots 

FIGURE 9.2. Initial data points: (a) Opening angle plot of QBS curve of Figure 9.1. Maxima
points (circles) are the detected knots; (b) Detected knots are placed on the original curve.

(a) (b)

Original

Approximation

Control Points

Knots

FIGURE 9.3. Control points evaluation: (a) Intersection points, of the tangents of the curve
at its knots, representing expected location of control points, (b) Curve approximation of
QBS curve of Figure 9.1 after Step 1.

as the initial knot positions (Figure 9.2(b)). One can observe that the positions of
detected knots are very close to their actual locations (compare Figure 9.1 and
Figure 9.2(b)). Using this method, detected positions of knots, for any QBS curve,
are always precise and accurate.

Location of control points can be calculated very easily from the detected knots.
Intersection points of tangents, for the curve at its knot positions, are the locations
of control points (Figure 9.3(a)). Knots at curve endpoints are also selected as two
control points because the approximation curve is intended to be open nonuni-
form QBS. The B-spline curve through these detected control points and knots is
an approximation curve (Figure 9.3(b)). The computed curve is accurate enough,
requiring no future working. Step 1 provides an accurate curve approximation if
the given curve is quadratic but requires Step 2 and/or Step 3 approximation for
higher polynomial curves. Therefore, if the approximation error (the area between
two curves) exceeds the specified threshold limits, approximation results are trans-
ferred to the next step for further processing.
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9.3.1.2 Knot Insertion (Step 2)

This step increases flexibility of approximating QBS by insertion of additional
knots/control points at appropriate locations. We take the cubic B-spline curve
(Figure 9.4(a)) as input for explanation of this step. Its opening angle plot is shown
in Figure 9.4(b) and maxima points of this plot represent the initial knot posi-
tions. As the input curve is a cubic spline, detected knot positions may not be
at their actual knot positions. However, minima points in Figure 9.4(b) represent
the actual knot positions of the cubic B-spline which can lead to approximation
techniques using cubic B-splines. Here we restrict ourselves to approximation with
QBS, which should be applicable to the curves with any degree of polynomial/type
of spline.

Approximating the curve through the detected knots is shown in Figure 9.5(a).
The amount of error between two curves (Figure 9.5(a)) is undesirable. The
acceptable error limit depends on the size/resolution of given curve. We use three-
pixel error limits in our method. Therefore the default value of 3 can be assigned
as the error limit when each curve point represents one pixel.

Additional knots are introduced to minimize error between two curves [2].
Approximation error minimizes at knot positions and maximizes in between.

(a) (b) Parameter Values (ui)

θ(rad)

3.15

3.1

3.05

3

2.95

2.9
0 0.2 0.4 0.6 0.8 1

FIGURE 9.4. (a) Cubic B-spline with five control points; (b) the opening angle plot.

Original

Knots
Control Points
Approximation

Original

Knots
Control Points
Approximation

(b)(a)

FIGURE 9.5. Curve approximation of Figure 9.4(a): (a) after Step 1; (b) after Step 2.
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Original
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Knots

Approximation
Original

Control Points
Knots

Approximation

(b)(a) (c)

FIGURE 9.6. (a) Cubic Bezier curve. (b) Curve approximation after Step 2. (c) Curve
approximation after Step 3.

The maximum errors between each pair of knots are called maximum error points
(MEPs). New knots are inserted at the MEPs that exceed the threshold error limit.
Approximating a curve after inserting these knot(s) is shown in Figure 9.5(b).
Note that only one knot was added and approximation error decreased below the
threshold value. Step 2 is expected to bring approximation error below threshold
limits in a single iteration. The results of this step are fed to Step 3 for further
refinement.

9.3.1.3 Error Minimization (Step 3)

This refinement step minimizes approximation error without introducing any more
knots/control points. The shape of the approximating curve can change by chang-
ing knot positions [7]. In this step, detected knots are moved along the curve
to exploit the design flexibility of the B-spline in order to optimize the ultimate
approximation curve.

The following search technique is used to find the new (optimized) location of
knots:

1. MEP between each pair of knots is located.
2. If the error at that point exceeds one-half of the specified threshold limit, then

the closest knot is shifted to a half distance toward that MEP.
3. If the approximation error does not improve by shifting the knot, it is taken

back to its original position.

We use the cubic Bezier spline for demonstration of this step. Figure 9.6(a) is the
original cubic Bezier curve taken for processing. Figure 9.6(b) shows the approx-
imation curve after Step 2 and Figure 9.6(c) is the curve after Step 3. Note only
one knot has shifted in Step 3.

9.3.2 Demonstration
Most of the curve approximation techniques search for suitable interpolation
points, which is an expensive operation and requires a large number of data points
to present a good quality of approximation. The proposed technique, using general
QBS curves, is based on approximation of data points and outperforms previous
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(a) (b) (c)

FIGURE 9.7. Curve approximation result: (a) cubic B-spline; (b) after Step 1; (c) after
Step 3.

(a) (b) (c)

FIGURE 9.8. Curve approximation result: (a) input Bezier spline of degree 5; (b) after Step
1; (c) after Step 2.

methods in quality. Quality of any curve approximation technique can be gauged
on various parameters such as computational efficiency, robustness of algorithm,
approximation error, number of data points (control points or knots) and visual
appearance.

The presented algorithm is computationally very efficient because it does not
require any extensive search technique for detection of data points (Figure 9.7).
Data points are located without any search in Steps 1 and 2, and Step 3 is a sim-
ple optimization of approximation results. Data points once detected are not dis-
carded. The presented algorithm is very robust (even if no data points are found in
Step 1); it performs well on any given curve. The detected data points are very well
located and only few data points can demonstrate approximation of quite flexible
and higher polynomial curves. Human judgment with visual appearance of com-
puted curves is the most important factor in any curve approximation results. Vari-
ous results are demonstrated in this section to analyze the quality of approximation
with the proposed technique.

Figure 9.8(a) is a Bezier curve [1] constructed, with polynomial of degree 5, for
approximation. Figure 9.8(b) and 8(c) are the approximation results after Step 1
and Step 2, respectively. The approximation result after Step 2 was accurate
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(a) (b) (c)

FIGURE 9.9. Curve approximation result: (a) input cubic cardinal spline; (b) after Step 1;
(c) after Step 2.

(b) (c)(a)

FIGURE 9.10. Curve approximation result: (a) input cosine curve; (b) after Step 1; (c) after
Step 2.

enough, avoiding any further processing (Step 3). Seven control points were com-
puted to approximate the given curve (with six control points and polynomial of
degree 5).

Figure 9.9(a) is a Cardinal spline [5] specified with four control points. Its
approximation after Step 1 and Step 3 is demonstrated in Figures 9.9(b) and
9.9(c), respectively. Step 2 approximation was not needed/performed. The curve
is approximated with four control points, which is equal to the control points of
the original curve.

Figure 9.10(a) is a plot of cosine function. Its approximation results after Step 1
and Step 2 are shown in Figures 9.10(b) and 9.10(c), respectively. Step 3 approxi-
mation was not required due to the good quality of result after Step 2.

In all the above results, note that the algorithm performs quite well on a variety
of input curve models. Remember that the computed curve is a QBS, even though
(in most of the cases) the number of computed control points (on which it is con-
structed) equalizes to the number of control points of the original (higher poly-
nomial) curves. Also note that two steps of approximation are normally involved
for computing approximating curves. Thus, the efficiency of this algorithm is in
general much higher than it looks.

9.4 Nondeterministic Approach

Approximating data or curves with spline [3–7] is an important topic in the area of
computer graphics. If we have to make a good model from complex data or a com-
plex function, it is difficult to approximate it by a single polynomial. In this case,
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a spline is one of the most appropriate approximating functions. The key to using
a B-spline formulation is the determination of good knots and obtaining good
approximation. One needs to place the knots as precisely as possible for a good
approximation. In such cases, one need to deal with knots as variables. Then the
problem becomes a continuous nonlinear and multivariate optimization problem
with many local optima. Therefore, it is difficult to obtain a global optimum [3].

In the current literature, genetic algorithms (GAs) have been widely rcognized
as a useful vehicle for obtaining high-quality or even optimal solutions in this
area. However, the knots of a spline do not need to be optimal: usually suboptimal
is sufficient. So, GAs can be conveniently applied for the determination of good
knots [1].

9.4.1 A Brief Overview of GAs
In the last decade, genetic algorithms (GAs) have emerged as practical robust
optimization search methods. Introduced by Holland in the 1970s, GAs are search
techniques based on the concept of evolution [8]. Given a well-defined search
space in which each solution is represented by a bit string, called a chromo-
some, a GA is applied with its three genetic search operators, namely, selection,
crossover and mutation, to transform a population of chromosomes with the
objective of improving the quality of the chromosomes. The individual bits of
a chromosome are called genes. Before the search starts, a set of chromosomes
is randomly chosen from the search space to form the initial population. The
three genetic search operations are then applied one after the other to obtain
a new generation of chromosomes in which the expected quality over all the
chromosomes is better than that of the previous generation. The process is
repeated until the stopping criterion is met (e.g., a predefined number of gen-
erations are processed). In the end the best chromosome of the last generation
is reported as a final solution. The outline for the GA algorithm is shown in
Figure 9.11.

9.4.2 Implementation Summary
In this section, the summary of the work proposed in [1] has been presented. The
details of the scheme can be seen in [1]. It can be summarized in the following
steps:

1. Individuals are constructed by considering the candidates of the locations of
knots as genes, as shown in Figure 9.12.

2. A control parameter called the knot ratio, R, has been used, where R is the ratio
of the numbers of 1’s and 0’s in an individual (see Figure 9.13).

3. If the procedure of knot detection is applied, these knots are kept constant by
applying the OR operation between the chromosome and the chromosome rep-
resenting the detected knots, as shown in Figure 9.13. The OR operation is
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Initialization

Evaluation

Selection of Parents

Crossover

Mutation

Replacement

FIGURE 9.11. A GA outline.

FIGURE 9.12. Genetic formulation.

applied after both the crossover and mutation have been applied so that we
don’t lose these knots during these operations. In this way the detected knots
remain unchanged in the subsequent generations.

4. Akaike’s information criterion (AIC) [2] has been used as the fitness function.
It is given by:

AI C = N loge Q1 + 2 (2n + m) (9.5)
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1 0 1 1 1 0 1 0 0 0 1 1
Chromosome representing the curve

OR
1 0 0 1 0 0 0 1 0 1 0 1
Chromosome representing detecting knots only

1 0 1 1 1 0 1 1 0 1 1 1
Resultant Chromosome

FIGURE 9.13. Preservation of significant knots.

where

Q1 =
N∑

j=1

w j

{{
Sx j (t) − x j (t)

}2 + {Sy j (t) − y j (t)
}2
}

(9.6)

where N is the number of data, n is the number of interior knots, and m is the
order of the spline to be fitted on the given data. It should be noted that the
smaller value of (9.5) gives better fitness. The Sx(t) and Sy(t) are the x and
y components, respectively, of the approximated spline S(t) over the data F,
and w j is the weight of data, taken to be 1 for all data points in our case. The
subscript Q indicates the dimension of the data.

5. The fitness value of the solution is determined through AIC.
6. The control parameters constitute population size K , genelength L , crossover

probability C , mutation probability M and knot ratio R.

9.4.3 Demonstration
In this section some results have been presented that demonstrate the curve scheme
in different scenarios. Figure 9.14 displays an exponential function:

f (x) = 1
1 + e−x . (9.7)

The GA scheme was applied to find out the approximate spline curve for this func-
tion data in Figure 9.15. A gene size of 101 knots (see the points indicated as “x”)
was taken; a cubic B-spline curve was selected as the computational model; a knot
ratio was taken as 0.3; population size was 30 (see bullets); and data was con-
sidered without noise. After five iterations, the approximated curve (loose curve)
achieved can be seen in Figure 9.15; it requires more iterations to converge to the
original function. Table 9.1 shows all the selected parameters.

The same parameter choice as in Table 9.1, but with noise generated in the data,
was used to demonstrate the scheme in Figure 9.17. Figure 9.16 has been plotted
by introducing some noise in the actual function, that is,

Fj = f (xi ) + ε j , j = 1, 2, . . . , N , (9.8)
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FIGURE 9.14. Input function.

FIGURE 9.15. The result (loose curve) after five iterations of GA implemented.
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TABLE 9.1. Description of parameter selection.

Function Gene length Population Knot Number of Order of Noise
ratio generations spline

Exponential 101 30 0.3 05 4 No

100

80

60

40

20

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

FIGURE 9.16. Exponential function data with noise addition.

where f (x) is the underlying function in Equation (9.7), and ε j is a measurement
error.

Figure 9.17 is the cubic B-spline fitted to a uniformly distributed noisy data.
Analysis of various other facts regarding the output in Figure 9.17 are given in
Figures 9.18–9.20. For example, Figure 9.18 is the demonstration of the sum of
the squares errors versus the number of generations. The details of other related
parameters is also given in Figure 9.18. Figure 9.19 demonstrates the AIC ver-
sus the number of generations. Figure 9.20 is the display of the graph showing
knot/generation versus number of generations.

Another implementation is made in Figure 9.21. This is to fit a cubic spline to
a sine function. Analysis of various facts regarding the output in Figure 9.21 are
given in Figures 9.22–9.24. For example, Figure 9.22 is the demonstration of the
sum of the squares errors versus the number of generations. The details of other
related parameters is also given in Figure 9.22. Figure 9.23 demonstrates the AIC
versus the number of generations. Figure 9.24 is the display of the graph showing
knot/generation versus number of generations.
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FIGURE 9.17. Cubic B-spline fitted to a uniformly distributed noisy data.
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FIGURE 9.18. Sum of the squares errors versus the number of generations.
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FIGURE 9.19. The AIC versus the number of generations.

0 50 100 150 200 250 300 350 400 450 500
6

8

10

12

14

16

18

20

No. of Generations

Knots/Generation versus No. of Generations

K
n

o
ts

 / 
G

en
er

at
io

n

FIGURE 9.20. The graph showing knot/generation versus number of generations.



188 9. Approximation with B-Splines Curves

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(x)

x

FIGURE 9.21. A sine function and fitted spline.
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FIGURE 9.22. Sum of squares error versus the number of generations.
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FIGURE 9.23. The AIC versus the number of generations.
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FIGURE 9.24. The graph showing knot/generation versus number of generations.
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FIGURE 9.25. Cardioid data.

FIGURE 9.26. Showing detected points.

FIGURE 9.27. After convergence (with corner detection).

Figure 9.25 displays the input data for a cardioid. Figure 9.26 shows the detected
knots before executing the genetic algorithm. Figure 9.27 is the cubic B-spline
fitted to the input data using corner detection algorithm. The algorithm converged
at the 98th generation. Figure 9.28 shows the number of knots versus number of
generations, Figure 9.29 is the demonstration of the sum of square errors versus
the number of generations and Figure 9.30 shows AIC versus the number of
generations.
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FIGURE 9.30. AIC versus number of generations.

FIGURE 9.31. After convergence (without detected knots).

Figure 9.31 shows the result obtained without using the corner detection tech-
nique. This version of the algorithm converged to almost the same solution but
with a greater number of knots and consuming more generations. This version
converged at the 104th generation.

A comparative study has been presented between the results obtained by using
detected knots and results without knot detection. A very interesting observation
that can be made on the basis of these results is that the algorithm showed better
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TABLE 9.2. Performance with and without detected knots.

Shape: Cardioid With detected knots Without detected knots
Generation converged on 98 104
No. of knots obtained 11 16

performance when aided by the detected knots. That is, the former version con-
verged earlier than the other. However, both in the end reached almost the same
solution in terms of sum square error. Sometimes the solution also shows a differ-
ence in the number of knots obtained. Table 9.2 shows a comparison between the
results obtained with and without the detected knot technique.

9.5 Summary

Two curve approximation techniques have been presented. One is deterministic
and the other is nondeterministic. The deterministic technique is the curve approx-
imation algorithm with QBS. The algorithm is a three-step process that is very sim-
ple and does not involve heavy computations. The algorithm is based on detection
of data points that are approximated (not interpolated) to get the ultimate approx-
imation curve. The nondeterministic technique is based on a genetic algorithm. It
is similar to the first technique except that its mechanism is to locate the most opti-
mal knots. Both algorithms are simple, efficient and robust for any given curve(s).
These schemes can lead to various applications in CAD and CAGD.

9.6 Exercises

1. Write a program to implement the B-spline curve in Equation (1).
2. Write a program to implement the curve approximation technique in Section 9.3.
3. Extend the curve approximation technique of Section 9.3 for a cubic B-spline.
4. Write a program to implement the curve approximation technique in Section 9.4.
5. Make a comparative study of the two schemes in Sections 3 and 4 about the

time cost when a quadratic B-spline is used in both cases.
6. Make a comparative study of the two schemes in Sections 3 and 4 about the

time cost when a cubic B-spline is used in both cases.
7. B-spline curve in Equation (1).
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10
Spirals

Abstract. Spirals are desirable for applications such as in highway route designing, robot
path planning, data-fitting problems, shape design, and curve/surface fairing in geometric
modeling. This chapter presents an efficient geometric algorithm for visualization of two-
point geometric Hermite conic and arc/conic spiral segments. A comparative study is made
with those of Tschirnhausen cubic spirals.

10.1 Introduction

Manipulating and designing of curves and surfaces [1–20] is an important area of
computer graphics and geometric modeling. The rational quadratic Bézier curves,
which are usually called the conic section curves, have been widely used for com-
puter graphics applications in various industries due to their well-known properties
and convenience for users [4, 5]. Traditionally, conic sections, when represented
by NURBS [1], are in the form of a rational quadratic Bézier curve.

The curvature is one of the most important geometric concepts of curves
and surfaces. Conics have no inflection points; however, they do have curvature
extrema. Therefore, only well-chosen conic segments will have monotone curva-
ture. Spirals are visually pleasing curves of monotone curvature; and they have
the advantage of not containing curvature maxima, curvature minima, inflection
points and singularities. Spirals are desirable for applications such as in highway
route designing [2], robot path planning [6, 17], data-fitting problems [10], shape
design [12], and curve/surface fairing in geometric modeling [11].

A method to create a two-point geometric Hermite planar curve by joining spiral
segments is described in [3,7,8]. The spiral segments are either spirals taken from
the Tschirnhausen cubic curve (referred to as the T-cubic) or spirals created by
joining circular arcs to segments of the T-cubic (referred to as the arc/T-cubic)
in a G3 fashion. However, it has not been possible so far to visualize the arc/T-
cubic spiral on the Web due to its lot of complications in the scheme and some
limitations of Java. We solve this problem by using a conic segment instead of a
T-cubic, and achieve the same level of smoothness but with a more simplified and
flexible algorithm suitable for demonstration as a graphics tool.

195



196 10. Spirals

In this chapter, the spiral segments have been created in two ways. The first
is by taking a spiral segment from a conic, which gives a curve referred to as a
conic spiral. The second is by joining a circular arc to a conic spiral in a G3 man-
ner, which gives a curve referred to as an arc/conic spiral. The method is local.
Changing one point of a local interpolant does not affect the whole curve, just
the part of the curve near that point. The rapid growth of information technology
and the World Wide Web motivates us to make the system appear over the Web.
In this paper, we also present a flow chart of an efficient algorithm to implement
two-point Hermite conic and arc/conic spiral segments as a graphics tool for the
designers. It is implemented through a Java applet and a user interface is provided
for demonstration on the Web. Online interactive graphics tool is easy to use and
comfortable for computer-aided designers or manufacturers. Both a Java imple-
mentation and the source code are available online at the address listed at the end
of this paper.

10.2 The Rational Quadratic Bézier Curve

A rational quadratic Bézier curve, i.e., a conic segment in normalized local coor-
dinate system, is shown in Figure 10.1. Its standard form for t ∈ [0, 1] is

z(t) = (1 − t)2 b0 + 2wt (1 − t) b1 + t2b2

(1 − t)2 + 2wt (1 − t) + t2
, (10.1)

where b0, b1, b2 ∈ R2 are noncollinear control points, w ∈ R is the weight
associated with b1, (1 − t)2 = B2,0(t), 2t (1 − t) = B2,1(t), t2 = B2,2(t) are
Bernstein basis functions. Without loss of generality, assume the points of the
geometric Hermite data are b0(= (−1, 0)), and b2(= (1, 0)). Assume the total
rotation of the tangent vector is less than π , so that the initial and final tangent

b0(−1,0) b0(−1,0)b2(1,0) b2(1,0)

b1b1

00

(a) Conic Spiral (no curvature extrema). (b) Conic (one curvature extremum).

FIGURE 10.1. A rational quadratic Bézier curve.
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vectors at b0, and b2, making angles θ0 and θ1, respectively, can be extended to
intersect at a point b1(= (b, c)) with c 	= 0.

The type of conic is characterized by the value of the middle weight w: z(t) is an
ellipse when w < 1, a parabola when w = 1 and a hyperbola when w > 1. If the
control polygon b0b1b2 forms an isosceles triangle (i.e., θ0 = θ1), set the weight
w = cos θ0, then the rational quadratic Bézier curve is a circular arc. Also, when
w is negative, z(t) is the complementary segment of the original conic segment.

10.3 The Conic Spiral

With reference to [1, 4], the signed curvature κ(t) of rational quadratic Bézier
curve (10.1) is given by:

κ(t) = z′(t) × z′′(t)
‖z′(t)‖3 , (10.2)

where × stands for the two-dimensional cross product (x0, y0)×(x1, y1) = x0 y1−
x1 y0 and ||•|| means the Euclidean norm. Suppose K is the number of curvature
extrema; then if the control point b1 is on

(i) the yellow region then K = 0, see Figure 10.1(a).
(ii) the white region then K = 1, see Figure 10.1(b).

(iii) the gray region then K = 2, see Figure 10.2(a).

(The corresponding curvature plots of Figures 10.1(a), 10.1(b), 10.2(a) and 10.2(b)
are shown in Figures 10.3(a), 10.3(b), 10.3(c), and 10.3(d), respectively.) If the
control point b1 is on the boundaries, then K is the smaller one of K for the regions
beside the boundaries. The number of curvature extrema within the segment (10.1)
depends on w, b and c. It can be seen in Figure 10.4 as a function on R3. If w, b and
c are varied continuously, then the number of curvature extrema changes only if
the curve segment has a curvature extremum at the boundary. This can be checked
easily by evaluating the derivatives of curvature κ ′ at t = 0 and t = 1, which gives

(a) Conic (two curvature extrema).

b1

b0(-1,0) b0(-1,0)b2(1,0) b2(1,0)

b1

(b) Arc/conic spiral (no curvature extrema).

00

FIGURE 10.2. A rational quadratic Bézier curve.
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FIGURE 10.3. Curvature plots of the curves in Figures 10.1(a), 10.1(b), 10.2(a), and
10.2(b), respectively.

-1
0

1b -1

0

1

c
0.6
0.8
1

1.2
w

-1
0

1b

FIGURE 10.4. Implicit plot of a0 and a4 on R3.

certain simple conditions. These conditions can be seen as surfaces in Figure 10.4,
which define a partition of R3 into several cells. The derivative of curvature in
(10.2) at t = 1/(1 + s) for s > 0 is

κ ′(t) = −6wc (1 + s)2
(

1 + 2sw + s2
)2 N (s)

D(s)
, (10.3)

where

D(s) =
[(

1 − s2
)2

w2c2+
{

2s + w (1 − b) + s2w (1 + b)
}2
] 5

2
and N (s) =

4∑

i=0

ai si ,

(10.4)
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TABLE 10.1. The number K of curvature extrema for rational quadratic Bézier curve (10.1)
determined by Descartes’ rule of signs.

Case 1 Case 2
a4 ≥ 0, a0 ≤ 0 a4 ≥ 0, a0 ≥ 0

w2c2 ≥ max[q(b), q(−b)] q(b) ≤ w2c2 ≤ q(−b) q(b) < w2c2 < q(−b)

w > 0 w2 > 1/2 w2 = 1/2 0 < w2 < 1/2

b ≤ 0

b ≥ 0 b < 0 b ≥ 0 b ≥ 0 b < 0 a4 > 0
a0 > 0

a4 > 0
a0 = 0

a4 = 0
a0 > 0

a4 + + + 0 0 + + 0
a3 + ? + + − ? ? −
a2 + − + + − − − −
a1 ? − + + − ? − ?
a0 − − + 0 0 + 0 +
K 1 1 0 0 0 2 1 1

Case 3 Case 4
a4 ≤ 0, a0 ≥ 0 a4 ≤ 0, a0 ≤ 0

w2c2 ≤ min[q(b), q(−b)] q(−b) ≤ w2c2 ≤ q(b) q(−b) < w2c2 < q(b)

0 < w ≤ 1 w2 > 1/2 w2 = 1/2 0 < w2 < 1/2

b ≥ 0

b ≥ 0 b < 0 b ≤ 0 b ≥ 0 b < 0 a4 < 0 a4 < 0 a4 = 0
a0 < 0 a0 = 0 a0 < 0

a4 − − − 0 0 − − 0
a3 ? − − + − ? ? +
a2 + − − + − + + +
a1 + ? − + − ? + ?
a0 + + − 0 0 − 0 −
K 1 1 0 0 0 2 1 1

for
a4 = −wp(b), a3 = −2 {p(b) − b} , a2 = 6wb,

a1 = 2 {p(−b) + b} , a0 = wp(−b),

where

p(t) (= pc(t)) = 1 + t − w2
{

c2 + (1 + t)2
}

.

Depending on the signs of a4 and a0, we consider the four cases highlighted in
Table 10.1, where “+” and “−” include “0.” “?” means either “+” or “−”, and
q(t) = p0(t). In fact, the cross-section of two surfaces a0 = 0 and a4 = 0 with
planes w = constant are the circles.

Within each cell the number of curvature extrema is constant. Therefore,
it suffices to check one representative for each cell in order to determine the
corresponding number of vertices.
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Remark 10.1. For any point within unit circle b2 + c2 = 1, there exists a weight
w such that the number of curvature extrema equals 0. Therefore, the sufficient
conditions for conic spiral matching geometric Hermite data are θ0, θ1 ≤ π/2.

The segment (10.1) for w2 ≥ 1/2 and b2 + c2 ≤ 1 has no curvature extrema
(i.e., conic spiral) if

min

[√
1 + b

(1 + b)2 + c2
,

√
1 − b

(1 − b)2 + c2

]

≤ w

≤ max

[√
1 + b

(1 + b)2 + c2
,

√
1 − b

(1 − b)2 + c2

]

. (10.5)

10.4 Comparison of Conic and T-cubic Spirals

This section gives the region for the curvature at the end points of the conic seg-
ment to compare our scheme with T-cubic spirals in [3,7,8]. To simplify the com-
parison, we treat the case when the curve is a spiral of positive curvature. The
curvature is monotone increasing and positive if (b, c) is in the fourth quadrant of
bc-plane. One should note that

κ(0) = c

w2
{
c2 + (1 + b)2}3/2 , κ(1) = c

w2
{
c2 + (−1 + b)2}3/2 , (10.6)

to obtain the spiral region for (κ(0), κ(1)) in Figure 10.5(a). Similarly, we consider
the spiral condition of positive curvature on (κ(0), κ(1)) for T-cubic spline of six
parameters. Let

FIGURE 10.5. The spiral conditions of positive curvature on (κ(0), κ(1)): (a) Conic,
(b) T-cubic.
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U (t) = α(t) + β(1 − t), V (t) = γ (t) + δ(1 − t),

and T-cubic spline z(t) = ((x(t), y(t))) is satisfying z(0) = b0 and z(1) = b2
where

x ′(t) = U (t)2 + V (t)2, y′(t) = 2U (t)V (t). (10.7)

Note the positive curvatures and use a change of variables:

(γ, δ) = 1√
2
(Y + X, Y − X),

the curvature is monotone increasing if κ(t) ≥ 0 and κ ′(t) ≥ 0, i.e., α(β − α) ≥
γ (γ − δ) which is equivalent to

(
X2 + 3Y 2

)2 + 36Y 2 ≤ 12XY, (10.8)

therefore, we have the following curvatures at end points:

(κ(0), κ(1)) = 3
√

3
2

(
X2 + 3Y 2

) 5
2 ×

√
X2 + 3

(
4 + Y 2

)
(

1
a2

0
,

1
a2

1

)

, (10.9)

where

(a0, a1) = X4 + 9Y 2
(

3 + Y 2
)

+ X2
(

3 + 6Y 2
)

+ 18XY (1,−1) .

Since the region (10.8) and the above curvatures (10.9) are symmetric with respect
to the origin, we only have to consider the region in the first quadrant of bc-plane
and combine (10.8) and (10.9) to obtain Figure 10.5(b). Figure 10.5 shows the
spiral conditions of positive curvatures on (κ(0), κ(1)) with gray color. The spiral
region for conic case in Figure 10.5(a) is shown with different shades of gray color
for w2 = 1, 0.81, 0.5. The region with all the gray shades is represented by 0.5 ≤
w2 ≤ 1 which is greater than T-cubic case in Figure 10.5(b). Finally, we have a
simple example in Figure 10.6 for κ(0) = 0.4 and κ(1) = 0.5 which can not be
covered by T-cubic spiral in [3, 7, 8].

10.5 The Arc/Conic Spiral

The arc/conic spiral that matches given geometric Hermite data is described below.
If the point of intersection b1 of the tangent lines is outside the unit disk: b2 +c2 ≤
1, i.e., π/2 < θ0 + θ1, then the arc/conic is formed by joining a circular arc to the
point of extreme curvature of a conic spiral in such a way that the unit tangents
match at the join.

The curvature of the circle is chosen to match the curvature of the conic spiral
at the join point, making the circle a circle of curvature and making the composite
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FIGURE 10.6. The conic spiral with κ(0) = 0.4, κ(1) = 0.5, and w = 0.9.

curve a spiral. This join is G3 since the derivative of the curvature of the circular
arc and the derivative of the curvature of the conic spiral at the join point are both
zero.

With reference to Remark 10.1, the sufficient spiral conditions for the conic part
of arc/conic are θ1+θ0−π/2 ≤ θ ≤ θ1−θ0+2φ and 0 < φ < θ0 for some suitable
choice of w. To simplify the analysis for Web application, we assume w2 = 0.5
and θ = θ1 +θ0 −π/2. For 0 < θ0 < θ1 < π and referring to Figure 10.7 and flow
chart in Figure 10.8, let the conic part of the arc/conic start at the point b0(−1, 0)
with tangent vector at angle θ0 with parameter t = 0, and end at the joining point:

Q
(= (qx , qy

)) = (1 + r (sin (θ1 − θ) − sin θ1) , r (cos θ1 − cos (θ1 − θ)))
(10.10)

with tangent vector at angle π/2 − θ0 with parameter value t = 1. Both tangent
vectors intersect at:

b1
1 = (cos (2θ0) + r cos θ0 (1 − sin (θ0 + θ1)) ,

− sin θ0 (2 cos θ0 + r (1 − sin (θ0 + θ1)))) , (10.11)



10.5. The Arc/Conic Spiral 203

θ0

θ

φ θ

Q

P

r

r

b1

b1
2

b1
1

b0 (−1,0) b2 (1,0)(0,0)

1

φ+θ1−θ

FIGURE 10.7. Arc/conic spiral.

Let the arc part of the arc/conic with radius

r = 1
sin (θ0 + θ1) (sin (θ0 + θ1) − 1)

{
sin (2θ0 + θ1)

+
√

4 − 3 cos2 θ0 − 4 cos θ1 sin θ0 − cos θ0 − sin θ1

}
, (10.12)

starting from the point Q with tangent vector at angle π/2 − θ0, sweep through
an angle θ and end at the point b2(1, 0) with tangent vector at angle π + θ1. Both
tangent vectors intersect at

b2
1 =

(
m0qx − m1 − qy, m0m1 (qx − 1) − m1qy

)

m0 − m1
(10.13)

where
m0 = tan

(π

2
− θ0

)
, m1 = tan(π + θ1).

Then quadratic Bézier curve (10.1) is the desired arc for b1 = b2
1, w = cos

(
θ
2

)
.

A simple example of an arc/conic spiral segment is shown in Figure 10.2(b) with
corresponding curvature plot in Figure 10.3(d).
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FIGURE 10.8. Flow chart to implement conic and arc/conic spirals.
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FIGURE 10.9. A curve made of conic spirals fitting given points.
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10.6 Examples

Figure 10.9 is a data-fitting example where the data are a set of points taken from
a smooth curve. The given points are shown as dots, each given point that is a
critical point is indicated by a circle around the given point and control points are
shown as disk. Conic and arc/conic spiral splines are shown as solid line matching
the given points well in these simple examples. Figure 10.10(a) is an outline of a
cup made of Hermite conic and arc/conic spiral segments. The shaded rendition of
the smooth curve in Figure 10.10(a) is shown in Figure 10.10(b). Figure 10.11(a)
and Figure 10.11(b) demonstrate the use of conic and arc/conic spirals for highway
design and obstacle avoidance when designing a robot path, respectively.

FIGURE 10.10. Hermite conic spiral interpolation: (a) Conic and arc/conic spiral spline,
(b) Shaded rendition.

(a)     (b)

FIGURE 10.11. Route planning with conic and arc/conic spiral spline: (a) Highway design
with third and last segments as a straight line. (b) Obstacles avoiding robot path.
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10.7 Limitations

Although both arc/conic and T/cubic spirals have G3 continuity internally, the
joining of neighboring pairs of spirals gives a curve that has only tangent conti-
nuity. Meek and Walton [9] presented a method for C-shaped interpolating curve
made of one or two conic spiral segments. This curve is curvature continuous
with monotone curvature, but this fairness is achieved at the cost of nonflexibility
and inconvenience of use in practical applications. For example, in their method
the angle between tangents at end points must be less than π/2, where as in our
arc/conic case it is less than π . Their method is also restricted for the case when the
sign of curvatures at end points are same and nonzero, so user has to compromise
on tangent continuity to interpolate an S-shaped curve. Further, their C-shaped
curve with one or two spiral segments cannot cover the entire region, and therefore
the examination of reachable regions for a designer may be confusing to develop
the two curves separately.

10.8 Summary

An efficient geometric algorithm, for visualization of two-point geometric Hermite
conic and arc/conic spiral segments, has been presented in this chapter. A compar-
ative study is made with those of Tschirnhausen cubic spirals. Spirals are desirable
for applications such as in highway route designing, robot path planning, data-
fitting problems, shape design, and curve/surface fairing in geometric modeling.

10.9 Exercises

1. What is a spiral?
2. What are the main applications of spiral curves?
3. Implement the spiral algorithms in this chapter.
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11
Corner Detection for Curve
Segmentation

Abstract. Corners in digital images give important clues for shape representation and
analysis. Corner points represent important features of an object that may be useful at
subsequent levels of processing. Corners are robust features in the sense that they pro-
vide important information regarding objects under translation, rotation and scale change.
If the corner points are identified properly, a shape can be represented in an efficient and
compact way with sufficient accuracy in many shape analysis problems. Shape representa-
tion and image interpretation depends, in most cases, on how correctly and efficiently the
corner points are located. Specifically, in the area of vectorizing planar images, contour
segmentation is very often managed by locating the exact corner points. This leads to the
piecewise solution of the problem.

11.1 Introduction

Corners in digital images give important clues for shape representation and analy-
sis. Since dominant information regarding shape is usually available at the cor-
ners, they provide important features for object recognition, shape representation
and image interpretation. Corners are robust features in the sense that they pro-
vide important information regarding objects under translation, rotation and scale
change. If the corner points are identified properly, a shape can be represented
in an efficient and compact way with sufficient accuracy in many shape analysis
problem.

Corner points represent important features of an object that may be useful at a
subsequent level of computer vision. Guru et al. [12] state that information about
a shape is concentrated at the corners and that corners practically prove to be
descriptive primitives in shape representation and image interpretation. Asada and
Brady [2] insist that these points play a dominant role in shape perception by
humans. Attneave [3] proposed that information along a visual contour is concen-
trated in the regions of high magnitude of curvature. Corner points are used in
various computer vision, computer graphics, and pattern recognition applications.
It can be used as a step in document image analysis, such as chart and diagram

209
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processing [15], and is also important from the view point of understanding human
perception of objects [3]. Corner points play a crucial role in decomposing or
describing a curve [1]. They are also used in scale space theory [8, 18], image
representation [5], stereo vision [9, 33], motion tracking [10, 34], image match-
ing [29, 32], building 2D mosaics [35] and preprocessing phase of outline captur-
ing systems [26, 27].

Corner detection schemes can be broadly divided into two categories based on
their applications:

• binary (suitable for binary images) and
• gray level (suitable for gray level images)

Corner detection approaches for binary images usually involve segmenting
the image into regions and extracting boundaries from those regions that contain
them. The techniques for gray-level images can be categorized into two classes:
(a) template based and (b) gradient based. The template-based technique utilizes
correlation between a subimage and a template of a given angle. A corner point
is selected by finding the maximum of the correlation output. Gradient-based
techniques require computing the curvature of an edge that passes through a
neighborhood in a gray-level image.

Many corner detection algorithms have been proposed which can be broadly
divided into two parts. One is to detect corner points from grayscale images [13,
16, 19, 30] and another relates to boundary-based corner detection [4, 6, 11, 13,
17, 20, 24, 28, 38]. This chapter mainly deals with techniques adopted for later
approach.

11.2 Basic Formulation

Visually, corners are the endpoints of straight-line segments of polygonal shapes.
But it is difficult and complicated to determine corners in case of nonparametric
curves as well as outlines of natural objects especially when the noise is carried.
In general, corners represent significant features of an object that human beings
would perceive as the meaningful points. Detection of these points is not an easy
job since accuracy of detected corners is gauged purely by human judgment and no
standard definition/criteria exists. In order to compute the corners, it is important
to give them some mathematical representation. In the literature, different authors
have described them in different ways. Abe and Kandonaga [1] described corners
as local maxima points. They proposed a method for decomposing curves into
straight segments and curved arcs, based on the slope at each point. Guru et al. [12]
smoothed the boundary curve and found a difference at each curve point called
a “cornerity index.” The larger values of the cornerity index were taken to be
corners.

Rosenfeld and Johnston [23] took curvature maxima points using k-cosine as
corners. Rosenfeld and Weszka [24] proposed a modification of [23] in which
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averaged k-cosines were used. Freeman and Davis [11] found corners at a maxi-
mum curvature change in which a straight-line segment moved along the curve.
The angular difference between successive segments was used to measure the
local curvature. Beus and Tiu’s [4] algorithm was similar to [11] except that they
proposed an arm cutoff parameter τ to limit length of straight line. Davies [7] has
described a method for detecting corners using the Hough transform. Chetverikov
and Szabo [6] located corners at significant change in curve slope. In their
algorithm, corners are the locations where a triangle of specified size and opening
angle can be inscribed in a curve. Pritchard et al. [20] used similar triangles, as in
Chetverikov and Szabo [6], to identify the corners in which they compared area
of triangle with the actual area under the curve.

In general, the accuracy of any corner detection algorithm changes with noise,
size and resolution of input shape and nature of corner (sharpness). It may perform
well for a particular shape and display poor results for others. This does not happen
in cases of human judgment because they are gifted with an adaptive nature and
automatically adapt themselves to the changing environment. Study of this human
behavior may lead to development of adaptive algorithms. Various parameters are
generally introduced to compensate for such variations. But it would be preferable
if one could go for an algorithm that covered a wide range of shape variations
without changing its parameters.

Accuracy of any corner detector can be judged only if the actual corner posi-
tions are already known. A panel of ten human observers was used to judge the
actual location of corners for eight test shapes. Corners marked by a majority were
taken as actual corner positions which were then used in measuring the accuracy
of different corner detectors. Figure 11.2 shows them as marked with actual cor-
ner points on the shapes in Figure 11.1. Figure 11.1 shows the test shapes that
introduced some noise into the original noise-free pictures. In addition, limited
random noise was added to the scanned images to better test the robustness of the
algorithms. These shapes (let us call them as im1, im2, . . . , im8 throughout this
chapter) are available in various references [6,37,38]. These shapes as well as few

FIGURE 11.1. Shapes used in the tests.
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FIGURE 11.2. Test shapes marked with actual corner points.

more shapes will be used to test corner detector algorithms in this chapter. Seven
corner detection algorithms have been implemented and tested. Four of them are
summarized in Section 11.3, while the rest are reported in Sections 11.4–11.6.

11.3 Summary of Commonly Referred Corner Detectors

This section is devoted to the summary of four corner detection algorithms used
by different authors. The summary is based on the survey in [6]. Each algorithm
inputs a chain-coded curve that is converted into a connected sequence of grid
points Pi = (xi , yi ), i = 1, 2, . . . , N . A measure of corner strength (cornerity)
is assigned to each point; then corner points are selected based on this measure.
For each approach, main steps are summarized together with the list of parameters
used in the algorithm and their default (“best”) values.

When processing a point Pi , the algorithms consider a number of subsequent
and previous points in the sequence as candidates for the arms of a potential corner
in Pi . For a positive integer k, the forward and the backward k-vectors at point Pi
are defined as

aik = (xi − xi+k, yi − yi+k) = (X+
ik, Y +

ik
)
, (11.1)

bik = (xi − xi−k, yi − yi−k) = (X−
ik, Y −

ik
)
, (11.2)

where X+
ik, Y +

ik and X−
ik, Y −

ik are the components of aik and bik , respectively.

11.3.1 Rosenfeld and Johnston (RJ73) Algorithm
To determine the corner strength, the k-cosine of the angle between the k-vectors
is used. It is defined as follows:

cik = (aik · bik)

|aik | |bik | . (11.3)



11.3. Summary of Commonly Referred Corner Detectors 213

where aik and bik are explained in Equations (11.1) and (11.2), respectively. The
selection procedure for the corner points is as follows. Starting from m = k N ,
k is decremented until cik stops to increase. That is:

cim < ci,m−1 < . . . < cin ≮ ci, n − 1.

Then k = n is selected as the best value for the i th point. A corner is indicated in
i if cin > c jp for all j such that |i − j | ≤ n/2, where p is the best value of k for
the j th point. The single parameter κ specifies the maximum considered value of
k as a fraction of the total number of curve points N . This limits the length of an
arm at κ N . The default value is taken as κ = 0.05.

For more details of the algorithm, the reader is referred to [23]. Demonstration
of the algorithm, for the shapes im1, im2, . . . , im8, is made in Figure 11.24.
The choice of the selected parameters, for these figures, can be seen in
Table 11.2. The “D” in Table 11.2 is meant for the default values; the deviations
from the “D” are shown otherwise. The proposed algorithm yields reasonable
results at the shown values for all the eight shapes. Points not well located are
indicated with arrows.

11.3.2 Rosenfeld and Weszka (RW75) Algorithm
To determine the corner strength, the averaged k-cosine of the angle between the
k-vectors is used, which is defined as follows:

c̄ik =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
k+2

k∑

t=k/2
cit , if k is even,

2
k+3

k∑

t=(k−1)/2
cit , if k is odd,

where cit are given by Equation (11.3). The selection procedure for the corner
points is the same as in RJ73, but it is performed for c̄ik . Similarly, the choice of
parameter is also same as in RJ73, with the same default value κ = 0.05.

For more details of the algorithm, the reader is referred to [24]. Demonstration
of the algorithm, for the shapes im1, im2, . . . , im8, is made in Figure 11.25. The
choice of the selected parameters, for these figures, can be seen in Table 11.2.
The “D” in Table 11.2 is meant for the default values; the deviations from
the “D” are shown otherwise. The proposed algorithm yields reasonable results
at the shown values for all the eight shapes. Points not well located are indicated
with arrows.

11.3.3 Freeman and Davis (FD77) Algorithm
To determine the corner strength at the i th point, the angle between the x-axis and
the backward k-vector defined in Equation (11.2) is given as:

θik = θik =
{

tan−1 (Y −
ik /X−

ik
)
, if

∣
∣X−

ik

∣∣ ≥ ∣∣Y −
ik

∣∣ ,

cot−1 (X−
ik/Y −

ik
)
, otherwise.
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The incremental curvature is then defined as

δik = θi+1,k − θi−1,k . (11.4)

Finally, the k-strength in i is computed as

Sik = ln t1. ln t2
i+k∑

j=i

δ jk, (11.5)

where
t1 = max

{
t : δi−v,k ∈ (−�,�),∀ 1 ≤ υ ≤ t

}
,

and
t2 = max

{
t : δi+k+v,k ∈ (−�,�),∀ 1 ≤ υ ≤ t

}
,

account for the effect of the forward and backward arms as the maximum spacings
(i.e., numbers of steps from i) that still keep the incremental curvature δik, within
the limit ±�. The � is set as follows:

� = arctan
(

1
k − 1

)
. (11.6)

The selection procedure for the corner points is as follows. The i th point is selected
as a corner if Sik exceeds a given threshold S and individual corners are separated
by a spacing of at least k + 1 steps. Two parameters are involved in the procedure.
These parameters are the spacing k and the corner strength threshold S. The default
values for the parameters are set as k = 5 and S = 1500.

For more details of the algorithm, the reader is referred to [11]. Demonstration
of the algorithm, for the shapes im1, im2, . . . , im8, is made in Figure 11.26. The
choice of the selected parameters, for these figures, can be seen in Table 11.2. The
“D” in Table 11.2 is meant for the default values; the deviations from the “D” are
shown otherwise. The proposed algorithm yields reasonable results at the shown
values for all the eight shapes.

11.3.4 Beus and Tiu (BT87) Algorithm
The corner strength for this algorithm is determined in the same manner as in
FD77. However, the following modifications are made. The arm cutoff parameter
τ is introduced to specify the upper limit for t1 and t2 as a fraction of N . These are
explained as follows:

t1 = max
{
t : δi−v,k ∈ (−�,�),∀ 1 ≤ υ ≤ t, and t ≤ τ N

}
,

and

t2 = max
{
t : δi+k+v,k ∈ (−�,�),∀ 1 ≤ υ ≤ t, and t ≤ τ N

}
,

where δik and � are given by Equations (11.4) and (11.6), respectively. The corner
strength is obtained by averaging Equation (11.5) between two values k1 and k2
as follows:
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Si = 1
k2 − k1 + 1

k2∑

k=k1

Sik .

The selection procedure follows exactly in the same manner as in FD77. There
is an involvement of two parameters for the procedure. These parameters are the
averaging limits k1 and k2, the arm cutoff parameter τ and the corner strength
threshold S. The default values for the parameters are set as k1 = 4, k2 = 7,
τ = 0.05, and S = 1500.

For more details about the algorithm, the reader is referred to [4]. Demonstration
of the algorithm, for the shapes im1, im2, . . . , im8, is made in Figure 11.27. The
choice of the selected parameters, for these figures, can be seen in Table 11.2.
The “D” in Table 11.2 is meant for the default values; the deviations from the
“D” are shown otherwise. The proposed algorithm yields reasonable results at the
shown values for all the eight shapes. Points not well located are indicated with
arrows.

11.4 Chetverikov and Szabo (CS99) Algorithm

In this algorithm [6] a corner point is defined as a point where a triangle of spec-
ified angle can be inscribed within a specified distance from its neighbor points.
The number of neighbor points to be checked are also predefined. It is a two-pass
algorithm. In the first pass, the algorithm scans the sequence of points and selects
candidate corner points. The second pass is postprocessing to remove superfluous
candidates.

11.4.1 First Pass
In each curve point P , the detector tries to inscribe in the curve a variable triangle(
P−, P, P+) constrained by a set of simple rules. For each point Pi , it is checked

if a triangle of specified size and angle is inscribed or not. The following three
conditions are used:

d2
min ≤ ∣∣P − P+

k

∣∣2 ≤ d2
max, (11.7)

d2
min ≤ ∣∣P − P−

k

∣∣2 ≤ d2
max, (11.8)

α ≤ αmax, (11.9)

where

P is the point under consideration for corner point,

P+
k is the kth clockwise neighbor of P ,

P−
k is the kth anticlockwise neighbor of P .
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Taking

a = ∣∣P − P+
k

∣
∣, the distance between P and P+

k ,

b = ∣∣P − P−
k

∣
∣, the distance between P and P−

k ,

c = ∣∣P+
k − P−

k

∣
∣, the distance between P+

k and P−
k .

The angle α can be computed by using cosine law as follows:

a2 + b2 − c2 − 2ab cos α = 0,

which yields:

α = cos−1

(
a2 + b2 − c2

2ab

)

All the three conditions described in Equations (11.7), (11.8) and (11.9) are nec-
essary for the first pass. Now each point P may have zero, one or more than one
alpha values. Among all alpha values, minimum value is taken as the alpha value
of that point P .

11.4.2 Second Pass
The second pass removes some super points. A candidate corner point P from the
first pass is discarded if it has a sharper valid neighbor Pv : α (P) > α (Pv ). A
candidate point Pv is a valid neighbor of P if |P − Pv |2 ≤ d2

max. As an alternative
definitions, one can use |P − Pv |2 ≤ d2

min or the points adjacent to P in the same
manner.

The values dmin, dmax and αmax are the parameters of the algorithm. Small val-
ues of dmin respond to fine corners. The upper limit dmax is necessary to avoid false
sharp triangles formed by distant points in highly varying curves. The αmax is the
angle limit that determines the minimum sharpness accepted as high curvature.

11.4.3 Demonstration
Practical demonstration of the corner detection algorithm CS99 is shown in
Figures 11.3–11.6. The outer boundaries of different images are selected to show
the results with the default values as well as with different values of dmin and αmax.
The effects of changing the parameters dmin and αmax are compared in Table 11.1.
Although the algorithm works fine and detects corners correctly in most of the
images, in some cases it may not find all of the corners at their most appropriate
positions such as in Figures 11.3 and 11.5. But the method, in general, takes care
of the points which can be considered as corner points for various applications.
However, appropriate parameter selection is a manual factor that a user needs to
select carefully.
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(a) (b)

FIGURE 11.3. Corner detection with CS99: (a) corner points at default parameters; (b)
corner points at dmin = 7 and αmax = 160.

(a) (b)

FIGURE 11.4. Corner detection with CS99: (a) corner Points at default parameters; (b)
corner points at dmin = 8 and αmax = 160.

(b)(a)

FIGURE 11.5. Corner detection with CS99: (a) corner points at default parameters; (b)
corner points at dmin = 7 and αmax = 140.
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FIGURE 11.6. Corner points at default parameters.

TABLE 11.1. Effects of changing parameter dmin and αmax on number of detected corner
points.

Figure # dmin αmax No of corner points
11.3(a) 7 150 9
11.3(b) 7 160 7
11.4(a) 7 150 4
11.4(b) 8 160 12
11.5(a) 7 150 15
11.5(b) 7 140 11
11.6 7 150 2

11.4.4 Performance Evaluation
Criteria for performance evaluation of corner detectors were given by Chetverikov
and Szabo [6], as follows:

• Selectivity: It is the most important factor for any corner detector. The rate of
correct detections should be high and the wrong ones should be low.

• Single response: Each corner should be detected only once.
• Precision: The positions of detected corners should be precise.
• Robustness to noise: The algorithm should perform well for noisy shapes

as well.
• Easy setting of parameters: Parameters should be logical and easy to tune for a

variety of shapes.
• Robustness for parameters: Minor changes in parameter should not cause dras-

tic changes in performance.
• Speed

For more details of the algorithm, the reader is referred to [6]. Demonstration of
the algorithm, for the shapes im1, im2, . . . , im8, is made in Figure 11.27. The
choice of selected parameters for these figures can be seen in Table 11.2. The “D”
in Table 11.2 is meant for the default values; the deviations from the “D” are shown
otherwise. The proposed algorithm yields reasonable results at the shown values
for all the eight shapes. Points not well located are indicated with arrows.
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TABLE 11.2. Parameter values for eight tested shapes.

Algorithm im1 im2 im3 im4 im5 Im6 im7 im8
SAM06 D D D D D D D D
CS99 D D D D D D D D
BT87 D D D 500 1000 1300 D 1000
FD77 D 7,2500 5,2500 5,500 D 7,1000 D D
RW75 D 0.15 D D D D D D
RJ73 D 0.15 D D D D D D

It has been observed that, for RJ73 and RW75, somewhat better results can be
obtained when the parameters are slightly modified. However, for stable perfor-
mance, FD77 and BT87 need more frequent modifications of their parameters. In
case of BT87, only S needed to be varied. CS99, of course, outperforms RJ73,
RW75, FD77 and BT87.

11.5 Sarfraz, Asim and Masood (SAM06) Algorithm

In this algorithm, detection of corner points is based on calculation of distances
from the straight line joining two contour points on two sides of that corner. The
algorithm is robust, simple to implement, efficient and performs well on noisy
shapes as well. The algorithm is divided into two passes. Candidate corner points
are detected in the first pass and superfluous candidate corner points are discarded
in the second pass. The two passes are explained below in detail.

11.5.1 First Pass
Any contour point Pj is a candidate corner point if it satisfies two conditions.
First, Pj (located between two contour points Pi and Pk) is at maximum perpen-
dicular distance from the straight line joining these two contour points. Second,
the maximum perpendicular distance is greater than the given threshold value D.

For the contour point Pi where 1 ≤ i ≤ n and n is the number of contour points
in a closed loop, the contour point Pk is given as:

Pk =
{

Pi+L , if (i + L) ≤ n,

Pi+L−n, otherwise,
(11.10)

where L is a length parameter whose default value is 14. The perpendicular dis-
tance of all contour points between Pi and Pk are calculated from the straight line
joining these contour points. Point Pj is the point with maximum perpendicular
distance as shown in Figure 11.7. Pj is selected as a candidate corner point if its
perpendicular distance (d j ) from the straight line is greater than the parameter
D and the distance d j is assigned to Pj . The perpendicular distance d j of point
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(a) (b)

Pi

Pi

PjPj

Pk

Pk

FIGURE 11.7. The contour point at maximum perpendicular distance from the straight line
Pi Pk is marked as Pj . Same Pj respond to the two different straight lines in (a) and (b).

Pj (x, y) from the straight line joining the point Pi (x, y) and Pk(x, y) can be cal-
culated as:

d j =

⎧
⎪⎨

⎪⎩

∣∣Pj,x − Pi,x
∣∣ , if mx = 0,

∣∣Pj,y − m Pj,x + m Pi,x − Pi,y
∣∣

√
m2 + 1

, otherwise,
(11.11)

where

m = my

mx
= Pk,y − Pi,y

Pk,x − Pi,x
. (11.12)

The next candidate corner point is detected for a new straight line by increment-
ing both i and k. The process continues for i = 1 to n. For one straight line, there
can be only one candidate corner point or no candidate corner point at all. More
than one straight line may respond to the same point Pj as shown in Figure 11.7(a)
and 11.7(b). In this case, the higher value of d j is assigned to Pj .

11.5.2 Second Pass
Sometimes the corners to be detected are not the sharp angle points and we may
detect superfluous candidate corner points in first pass, as shown in Figure 11.8.
These superfluous points are discarded in second pass. The candidate corner point
is superfluous if any other candidate with higher value of d j is in the range R. The
default value of parameter R is equal to parameter L . Therefore for any candidate
point to be selected as a corner point, it must have its highest value of d j among
the R number of points on both of its sides. Three different points are detected as
candidate corner points in Figure 11.8(a), 11.8(b) and 11.8(c). Pj of Figure 11.8(a)
and 11.8(c) are discarded as Pj of Figure 11.8(b) has higher d j , which is in the
range R.
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Pi

Pi

Pi

Pj
Pj Pj

Pk

Pk

Pk

(c)(b)(a)

FIGURE 11.8. Superfluous candidate corner points are Pj in (a) and (c).

11.5.3 Parameters
The algorithm needs three external parameters—L , D and R, as given above. The
length of the straight line Pi Pk is fixed as per length parameter L throughout the
corner detection process. Thus, the straight line will always join the two contour
points, L points apart. The default value of L is 14. This parameter takes care of
object scaling and resolution. The default value assigned to L suits the size of all
test shapes demonstrated in Section 11.4.

Corners are the high curvature points which are recognized by their local sharp-
ness and opening angle. We use the distance parameter D as a substitute for
the sharpness and opening angle, to check their validity as a corner point. Any
point whose distance from the straight line Pi Pk goes beyond parameter D can be
selected as a valid corner point. The default value of D is 2.6. This is an important
parameter to control false selection of corners due to noise and other irregularities
in a curve. Higher values of D may miss some valid corners and lower values may
hit the wrong corners as well. For noisy shapes, accurate corners can be detected
by adjusting this parameter (see Figure 11.17(a)).

Sometimes local sharpness of a corner is not high enough, but a global view of
shape identifies it as a valid corner (Figure 11.8). Such corners are also detected
successfully with this method at the cost of some additional invalid (superfluous)
corners. These invalid corners are removed in the second pass by fixing the dom-
ination range R. Only the most dominant corner (with highest d j ) in the range R
is selected as a valid corner and all others are discarded. The default value of R is
equal to L but it must be given lower value to enable detection of closely located
corner.

11.5.4 Demonstration
The criteria for performance evaluation in this algorithm is the same as given by
Chetverikov and Szabo [4], which is explained in Section 11.4.4. Test results of
this algorithm are compared with five corner detectors presented in Chetverikov
and Szabo [6] and explained in Sections 11.3–11.4. These are based on scanned
images presented in [7], with the inclusion of some noise into the original noise-
free pictures. It also uses the same noisy test shapes, which were downloaded from
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(c)

(f)(e)

(b)(a)

(d)

FIGURE 11.9. Detected corner points for im1 as per parameters given in Table 11.2: (a)
SAM06, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.

FIGURE 11.10. Detected corner points for im2 as per parameters given in Table 11.2: (a)
SAM06, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.

the website [17]. Very minor variations in demonstrated test shapes from [6] are
possible; however, efforts have been made to keep them close to [6].

Comparative results are demonstrated for eight different shapes (im1 to im8;
see Figure 11.1). Results of the six algorithms in Sections 11.3–11.4 are presented
together for each shape to have an effective comparison (see Figures 11.9– 11.16).
Parameters assigned for each test shape in a particular algorithm are also kept
closer to ones demonstrated in [6]. Parameters assigned in each test are summa-
rized in Table 11.1. In that table, parameter value “D” stands for a default value.
For BT87, the corner strength parameter S was modified for im4, im5, im6 and
im8. For FD77, the spacing parameter k and corner strength parameter S were
modified for im2, im3, im4 and im6. For RW75 and RJ73, parameter k was modi-
fied for im2. For details of these parameters, the reader is referred to [4,6,7,28,38].

For the results of im1 in Figure 11.9, SAM06 and CS99 produced similar results
and detected precise corners without selecting any wrong ones. One may accept
corners of FD77 as well. All other algorithms tend to hit the wrong corners.
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FIGURE 11.11. Detected corner points for im3 as per parameters given in Table 11.2: (a)
SAM06, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.

(a) (b) (c) (d) (e) (f)

FIGURE 11.12. Detected corner points for im4 as per parameters given in Table 11.2: (a)
SAM06, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.

For im2 in Figure 11.10, results of all algorithms were the same except RW75
& RJ73. For im3 in Figure 11.11, SAM06, CS99 and BT87 precisely detected
corners, and all other algorithms detected few additional wrong corners.

For im4 in Figure 11.12, very different results were obtained by each algo-
rithm due to heavy noise along the object boundary. SAM06 detected corners
with one or two additional wrong corners, but all of them were well separated.
All other algorithms either detected many wrong corners or missed the actual cor-
ners. Results of RW75 and RJ73 were badly affected by the irregularities along the
curve. Because the image contained heavy noise along its curve boundary, SAM06
did produce precise results with slight modification of parameter D as shown in
Figure 11.16(a), which has not been possible due to any other algorithm. For im5
in Figure 11.13, SAM06 again outperformed all other algorithms in corner selec-
tivity. CS99 achieved similar corners by adjusting parameters.
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FIGURE 11.13. Detected corner points for im5 as per parameters given in Table 11.2: (a)
SAM06, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.

FIGURE 11.14. Detected corner points for im6 as per parameters given in Table 11.2: (a)
SAM06, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.

For im6 in Figure 11.14, results of SAM06 did not find any wrong corner. How-
ever, it missed approximately four corners according to the human vision decision
as shown in Figure 11.2. By slightly reducing the dominant range parameter R,
SAM06 has added one missed corner to the list (see Figure 11.17(b)). Detected
corners by SAM06 were precise and without detecting any wrong ones. For im7
in Figure 11.15, detected corners by SAM06 were precise, well located and with-
out wrong ones. Results of RJ73 were close to the results by SAM06 but few
detected corners (indicated with arrows) were not at their perfect locations.
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FIGURE 11.15. Detected corner points for im7 as per parameters given in Table 11.2: (a)
SAM06, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.

FIGURE 11.16. Detected corner points for im8 as per parameters given in Table 11.2: (a)
SAM06, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.

For im8 in Figure 11.16, results of SAM06 were good but not of the quality
demonstrated for other shapes. This was because the corners of this shape were
closely located. Therefore, the dominant range parameter R could be modified for
better results. Results of this shape after adjusting parameter R is demonstrated in
Figure 11.17(c). CS99 produced the same results by adjusting its parameters [4].

It can be observed in all above demonstrated results of SAM06 that the rate of
selecting wrong corners is almost zero; this is only in im4 and only with default
parameters. Figure 11.17 shows results of im4, im6 and im8 with a slight variation
in the parameters of SAM06. A change in parameter was required due to variations
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FIGURE 11.17. Detected corner points with SAM06: (a) im4 at D = 3; (b) im6 at R = 13;
(c) im8 at R = 7.

in the nature of shapes as discussed above. It is not possible to develop a corner
detector, with fixed parameter values, that performs equally well on shapes of
varying scale, resolution, noise level and nature of corners (sharpness). Therefore,
variation of parameters for different test shapes is perfectly fine but the algorithm
should then be able to detect proper corners. SAM06 gets very close to that level;
however, automatic calculation of parameters will be a good contribution, which
can make this algorithm self- sufficient.

It is not easy to compare computational efficiency of different algorithms due
to implementation variations. However, a rough estimate of their efficiency can
be made by looking at the calculations involved. The SAM06 algorithm traverses
around the closed loop only once in the first pass and detects candidate corners
by calculating simple distances (no angles or curvature evaluation involved). Can-
didate corners are then traversed once in the second pass to discard superfluous
candidates. This definitely indicates the computational efficiency of the algorithm.

11.6 Masood and Sarfraz (MS06) Algorithm

This algorithm is different from traditional approaches as it does not involve cal-
culation of the cosine angle and curvature and incorporates both local and global
views of a given shape. A set of three rectangles represents the three views of a
given shape. These rectangles are moved along the shape boundary and contour
points in each rectangle as each step is counted. This information (i.e., the count
of points in each rectangle) is used to make a final decision about the corner. This
algorithm covers a wide range of shape variations without changing its parameters.

This algorithm works on sequence of n integer coordinate points describing a
closed curve C ,

C = {Ci = (xi , yi ), i = 1, . . ., n}
where Ci+1 is a neighbor of Ci (modulo n). This technique of corner detection is
based on three sliding rectangles (Figure 11.18) along the given curve. Information
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FIGURE 11.18. Three sliding rectangles (R1, R2 and R3) used to detect corners.

about location of the surrounding contour points is gathered in its way. Three
sliding rectangles with common centroid at Ci are given as:

R1 = 2L × 2W,
R2 = L × 2W,
R3 = L × W.

⎫
⎬

⎭

Rectangles must lie along the slope S of curve with center at contour point
Ci . The slope of contour at Ci is a straight line between two points (P1 and P2),
obtained by taking the mean of k + 1 points (including Ci ) on both sides of Ci . It
is given as follows:

P1 = 1
k+1

i−k∑

i
Ci , k = 4,

P2 = 1
k+1

i∑

i+k
Ci , k = 4.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(11.13)

The contour point Ci automatically adjusts at the center when length and width of
R1 is adjusted at the L and W distance from Ci . The length is taken along the slope
S and the width is taken perpendicular to the slope S. The point at unit distance
from Ci along the slope S may be calculated as Ci ± P2−P1|P1 P2| , where |P1 P2| is the
length of straight line between point P1 and P2. Rectangles R2 and R3, sharing a
common center Ci , are also drawn with this method. Thus, R3 ⊂ R2 ⊂ R1.

The set of rectangles is moved along the given curve/contour and a number of
neighboring points in each rectangle are counted, which can range from Ci−L to
Ci+L . Let n R1,i , n R2,i and n R3,i represent the number of points in rectangles R1,
R2 and R3, respectively, having the i th contour point at the centroid. For example,
in Figure 11.19, n R1,i = 21, n R2,i = 15 and n R3,i = 13. The value of n R1, n R2
and n R3, for each contour point is ultimately used while making final decision
about the corners.

Corners may be found easily from computer-generated curves and shapes by
simple analysis of their curvature. Finding corners from outlines of natural shapes
and scanned images imposes a challenging task. This is due to noise and low
resolution of images, which introduces irregularities along the object boundary.
Such irregularities of a curve do not impose much of a problem in human judgment
of corners because people have the inherent quality of automatically adjusting
their scale/view (local, global or in-between), which is the most appropriate to
keep in view noise and size of image. In a smaller view, only a small part of a curve
is observed, whereas in a broader view a bigger part is considered. A broader view
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FIGURE 11.19. A snapshot of sliding rectangles at the i th contour point indicated with an
arrow.

gives the general area of a curve that may have a corner and hence the effect of
noise (irregularities) is lesser in that view. Similarly, in a smaller view, the effect
of noise is higher, but the absolute position of corners may be located in that area.
Relying solely on one view (by fixing a region of support) is one major drawback
of most corner detectors.

The MS06 algorithm combines three levels of view, following the natural cor-
ner detection methodology. A set of three rectangles (described above) takes three
different views of contour points. A record of their count (n R1,i , n R2,i and n R3,i ),
for each curve point, finds enough information to locate the proper corners. Rec-
tangle R1 takes a broader picture of a curve and passes only those contour points
for which no part of curve lies in the area (R1–R2). Such curve points can be
described as set G as follows:

G = {Ci : n R1,i − n R2,i = 0}, (11.14)

Or
G = {Ci : n R1,i = n R2,i }.

Set G represents a wider view of an image and does not respond to fake corners
(at curve irregularities) as discussed above. For example, in Figure 11.20 some
snapshots along irregular/noisy curves are shown. Centroids in Figure 11.20(a)
and 11.20(b) appear to be corners if a smaller part of a curve is viewed, but these
are not the valid corners that can be observed in their broader view. Such points are
rejected in a MS06 algorithm as it does not fulfill condition of Equation (11.14). In
other words, some parts of a curve lie in the area (R1 − R2) which is indicated by
arrows. The curves in Figure 11.20(c) and 11.20(d) would only be taken in set G.

Set G does not consist of simple corners; rather it gives a general area of curve
around the corner. Figure 11.21 shows some images marked with set G. Connected
points in set G form one group and a number of groups may exist in set G. The
maximum of one corner point can exist in each group. In each group, all points
with n R3,i value below the threshold “η” are determined, and the point with min-
imum n R3,i among them is selected as a corner. Curve point in Figure 11.20(c)
was part of set G but does not fall below threshold η; thus it cannot be considered
as a corner. Sometimes, none of the points in a group with n R3,i below η exist,
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FIGURE 11.20. Some snapshots of a rectangle sliding over noisy/irregular curves. Set G
of the curve does not support (a) and (b). Part (c) is also rejected as its n R3,i value is above
threshold “η.”

FIGURE 11.21. Some shapes marked (bold) with contour points in set G. Corners are
marked in gray.

which means a corner does not exist in that group. The corners for Figure 11.21,
found with this method, are marked by gray circles.

Pseudo code of MS06 algorithm is given in Figure 11.22. In this algorithm, the
default value of L is set as 16. The values of L/8 and 3L/4 are assigned to W and
η, respectively. All others parameters (lengths and widths of all rectangles) are
relative to L (Figure 11.18). The value of parameter L depends on the noise, reso-
lution and size of the image. Assigned sizes of rectangles are suitable to a certain
range of size and resolution, which covers all demonstrated shapes in this chapter.
These sizes were found after extensive testing on many shapes of similar size and
resolution. The relationship between relative size of rectangles is set (again with
extensive testing) for the convenience of using these parameters. The user needs to
tune only one parameter instead of three. One can improve the accuracy of corner
detection by assigning independent sizes to these rectangles, but that would be at
the cost of complex tuning of parameters.
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For each contour point Ci
Count n R1,i , n R2,i , n R3,i

End For

G = {Ci : n R1,i = n R2,i }
Make groups of connected points in G

For each group Gk
Corner = min

n R1, j
{Gk, j : n R1, j < η}

End For

FIGURE 11.22. Algorithm of proposed corner detector.

11.6.1 Performance Criteria
A variety of corner detectors have been proposed for digital curves. Their com-
parative study has also been presented by some authors. Abe and Kandonaga [1]
compared seven corner detectors. In their testing, they used flow chart symbols
and sample figures (used for dominant point detection). Their evaluation criteria
consisted of (a) degree of coincidence with the corner points detected by human
subjects, (b) processing time, and (c) invariance of results against rotation, size
change and reflection of input image. Guru et al. [12] presented a comparison of
three corner detectors on the basis of similar criteria. In both comparisons, the
role of noise/irregularity along the curve was ignored, which can adversely affect
the results of any corner detection algorithm. Liu and Srinath [17] proposed eval-
uation criteria that included noise sensitivity. Performance evaluation criteria by
Chetverikov and Szabo [6] was (a) selectivity: rate of correct detection; (b) single
response: each corner should be detected only once; (c) precision: precise position
of detected corners; (d) robustness to noise; and (e) easy setting of parameters.

Unfortunately no standard test shapes and evaluation criteria (especially for dig-
ital curves) have been decided for comparison of corner detection results. Corner
detection algorithms are normally very sensitive to size/resolution of tested shapes,
noise/irregularities along the boundary curve, sharpness of expected corner points
and parameter values used.

Corners are sometimes confused with dominant points. Teh and Chin [31]
proposed a dominant point detection algorithm and compared with other algo-
rithms (including corner detectors) on the basis of maximum error, integral square
error and figure of merit. Such criteria are suitable for polygonal approximation
and poor for corner detectors. Rattarangsi and Chin [21] have also made similar
comparisons. Care must be taken while comparing corner detection algorithms.
Masood and Sarfraz [38] proposed a criteria for evaluation/comparison of corner
detection algorithms. It is given as follows:

• Accuracy: This is the most important criterion without which all other mer-
its of any corner detector have no value. Accuracy of detected corners will be
measured by calculating: (a) percentage of correctly determined corners, (b)
percentage of wrongly detected corners, and (c) percentage of missed corners.
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• Localization error:
• Noise sensitivity: Noise can adversely affect the accuracy of detected corner

points.
• Transformation invariance:
• Single response: Sometimes one corner point is selected more than once and

sometimes two or three closely located points represent the same corner posi-
tion. A corner should produce a single response.

• Parameter setting: In corner detection, parameters are very important to com-
pensate for noise and size variations. One setting of parameters should be robust
to minor shape variations.

• Computation time.

11.6.2 Demonstration
Testing of six corner detectors BT87, FD77, RW75, RJ73, CS99, and SAM06
has been shown in Sections 11.3– 11.5. Figures 11.24– 11.29 show the results for
these tests against the test shapes im1, im2, . . . , im8. Detected corners by MS06
algorithm are shown in Figure 11.30. Best results for each algorithm were obtained
by assigning optimum parameter values, and all results of the MS06 algorithm
were taken on default parameters. A list of parameters assigned for each algorithm
is summarized in Table 11.3. The letter “D” is used for the default setting. For
details of these parameters, readers are referred to respective algorithms in this

TABLE 11.3. Parameter values assigned for results in Figures 11.24–11.29.

Parameter Values

Shapes RJ73 RW75 FD77 BT87 CS99 SAM06 MS06

im1 D D D D D D D
im2 Kappa

(κ) = 0.15
Kappa
(κ) = 0.15

Spacing
(k) = 7, corner
strength
(S) = 2500

D D D D

im3 D D S = 6,
K = 2500

D D D D

im4 D D Spacing
(k) = 5, corner
strength
(S) = 500

Corner
strength
(S) = 500

dmin = 8,
αmax = 140

D D

im5 Kappa
(κ) = 0.06

Kappa
(κ) = 0.07

D Corner
Strength
(S) = 1000

dmin = 8,
αmax = 140

D D

im6 D D Spacing
(k) = 7, corner
strength
(S) = 1000

Corner
strength
(S) = 1300

D D D

im7 D D D D D D D
im8 D D D Corner

strength
(S) = 1000

D D D
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chapter. Table 11.4 summarizes the number of correctly and incorrectly detected
corner points for each algorithm (see Figures 11.24–11.30). Some corner points
were not well located, which are indicated with arrows in each of Figures 11.24–
11.30 whereever applicable. Figure 11.23 shows overall accuracy comparison of
all algorithms.

TABLE 11.4. Number of correctly and incorrectly detected corner points (Figures 11.24–
11.29).

Correct Incorrect

RJ RW FD BT CS SAM MS RJ RW FD BT CS SAM MS

im1 9 9 9 8 9 9 9 3 3 2 2 0 0 0
im2 2 2 2 2 2 2 2 2 2 0 0 0 0 0
im3 4 4 3 4 4 4 4 5 5 5 0 0 0 0
im4 5 5 4 4 6 6 6 11 12 3 1 4 2 0
im5 7 8 9 10 9 9 9 3 3 6 3 0 0 0
im6 13 17 12 16 24 20 24 4 2 2 0 4 0 1
im7 12 12 8 7 12 12 12 5 6 3 3 9 4 5
im8 16 15 14 22 25 26 27 2 2 0 1 1 0 0

0

25

50

75

100

RJ RW FD BT CS

% Correct

% Incorrect

MS

FIGURE 11.23. Overall accuracy comparison for eight test shapes of in Figure 11.1.

FIGURE 11.24. Corner detection by the RJ73 algorithm [23]. Points not well located are
indicated with arrows.
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FIGURE 11.25. Corner detection by the RW75 algorithm [24]. Points not well located are
indicated with arrows.

FIGURE 11.26. Corner detection by the FD77 algorithm [11].

FIGURE 11.27. Corner detection by the BT87 algorithm [4]. Points not well located are
indicated with arrows.
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FIGURE 11.28. Results of corner detection by the CS99 algorithm [6]. Points not well
located are indicated with arrows.

FIGURE 11.29. Results of corner detection by the SAM06 algorithm [28].

FIGURE 11.30. Corner detection by the MS06 algorithm. The rectangular box shows im8
with parameter value L = 11.
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11.7 Overall Analysis

Overall accuracy of correctly detected corners in the FD77 algorithm was the low-
est (60%) for presented test shapes. One can observe (in im3, im4, im6, im7, im8
of Figure 11.26) that the FD77 algorithm misses some important corner points.
For the RJ73 algorithm, although the accuracy of correctly detected corners (67%)
was higher than the FD77 algorithm, it falls behind the FD algorithm in the case of
localization error (indicated by arrows in the respective figures) and the percent-
age of incorrectly detected corners (see Figure 11.23). Overall, correctly detected
corners by the RW75 algorithm (71%) was better than both algorithms, but the
percentage of wrong (incorrect) corners (34%) was equal to the RJ73 algorithm.

The reason for a higher percentage of incorrect detection in the RJ73 and RW75
algorithms was high noise sensitivity (see im4 in Figures 11.24 and 11.25). The
percentage of correct corner detection by the BT87 algorithm is higher (72%) than
the RJ73, RW75, and FD77 algorithms, but it also tends to miss some important
corners (in im4, im6, im7 of Figure 11.27). Performance of the BT87 algorithm
is better than the RJ73, RW75, and FD77 algorithms with respect to localization
error and incorrect detection (10%). Considerable improvement of overall accu-
racy can be seen in the CS99 algorithm with 92% of correct detection, 17% of
incorrect detection and improvement in localization error. Some incorrect detec-
tion was observed (in im4 and im7 of Figure 11.28) due to heavy noise, which
affected the overall performance of their algorithm.

The percentage of correctly detected corners by the SAM06 algorithm is around
90%, which is better than the BT87, RJ73, RW75, and FD77 algorithms. By
slightly reducing the dominant range parameter R, SAM06 has the ability to add
more missed corners, as was seen in Figure 11.17. Detected corners by SAM06 are
precise, and no wrong corners are detected. It has the upper hand in the sense that
it does not find wrong corners. Moreover, it has the lowest percentage of incor-
rect detection (6%), which is another big advantage of this algorithm over the five
algorithms BT87, RJ73, RW75, FD77, and CS99. One can hardly find a error at
any detected corner points.

The percentage of correctly detected corners by the MS06 algorithm (93%) is
slightly better than the CS99 algorithm. There was hardly any corner missed by
this algorithm except in im8 of Figure 11.30. This was due to low resolution of
that shape. Modifying the parameter value for im8 (at L = 11) raised accuracy of
correct detection to 98%. Result of im8 with new a parameter value is shown in the
rectangular box in Figure 11.30. The lowest percentage (equal to that of SAM06)
of incorrect detection (6%) is another big advantage of this algorithm. One can
hardly find localization error at any detected corner points. No other algorithm
can accurately find all the corners of im4 due to heavy noise except the MS06
algorithm and that is without any incorrect corner(s). Results of he MS06 algo-
rithm were taken on default parameter value (i.e., L = 16) and performance is
expected to improve with fine tuning (e.g., im8 in Figure 11.30). A corner point is
represented by a single point with minimum localization error.
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11.8 Piecing Boundaries

Segmentation of object boundaries was one of the main objectives behind the work
on corner detection. The boundary/outline is divided into different pieces or seg-
ments of curves from detected corners, and each segment can be processed for
capturing separately or in a parallel way. Figure 11.31 shows outline segmentation
from detected corners. Figure 11.31(a) is the outline of the original object marked
with detected corner points. These corner points were found using the SAR06
method. Figure 11.31(b) is the object after segmentation. The object was broken
into eight segments in total.

Converting the outline segments into vector form, which is the objective
of the next chapter, is one of the useful applications of the corner detection
algorithms. After segmenting successfully, vectorizing the outline can be managed
in a computationally economical way by using a suitable technique from the next
chapter. The interested reader is referred to [26,27] for some efficient vectorization
techniques.

The image in Figure 11.32(a) has been tested for the vectorized outline cap-
ture using the Bézier cubic approximating technique in [26]. Test results of the
self-generated shape at threshold 3 is shown in Figure 11.32. Figure 11.32(a)
is the original bitmap image; Figure 11.32(b) is the extracted outline; and
Figure 11.32(c) shows the detected corner points through the MS algorithm.
Figure 11.32(d) shows the end points of the curve segments (over the computed
outline) after segment subdivision. Figure 11.32(e) shows the cubic Bézier control

ba b

Seg 2

Seg 6

Seg 8

Seg 1

Seg 4

Seg 3

Seg 7

Seg 5

FIGURE 11.31. Outline segmentation from corners: (a) Detected corners; (b) segmented
boundary with allotted segment numbers.
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(a)

(d)

(b)

(e)

(c)

(f)

FIGURE 11.32. Capturing an outline object: (a) bitmap image; (b) extracted boundary;
(c) detected high curvature points; (d) segment end points after segment sub-division; (e)
detected piecewise cubic Bézier control points; (f) computed boundary.

points detected in each segment. Cubic Bézier control points (segment end points
or corner points) are shown by (∗), and computed control points are shown by (•).
The computed (vectorized) outline is shown in Figure 11.32(f) for easy compari-
son with the original outline in Figure 11.32(b). Note that very few segments are
making a very elegant approximation.

11.9 Summary

Corners are not simply the local maxima, high curvature or dominant points.
Points of abrupt change from where the shape can be segmented, and which human
beings perceive as meaningful points, are the true corners. Seven corner detection
approaches, namely, BT87, RJ73, RW75, FD77, CS99, SAM06, and MS06, have
been discussed, experimented with, and analyzed. The SAR06 and MS06 algo-
rithms have been found to be the most accurate and efficient as they do not involve
curvature analysis and determination of trigonometric functions such as a cosine
angle. A comparative study, based on proposed parameters, shows that the SAR06
and MS06 algorithms have various advantages over previous techniques. Some
of the advantages are that (1) they are the most consistent with human judgment
of corners; (2) the ratio of false detection is extremely low; (3) they are com-
putationally efficient; (4) they are invariant to transformation changes; (5) they
are highly insensitive to noise/irregularities along the curve; (6) they are robust
to minor changes in size and resolution; and (7) they are very suitable for nat-
ural shapes/objects. Independent tuning of the parameters can further fine tune the
results if needed in some extreme case.

Object segmentation is used as a preprocessing step in a capturing process.
Objects are segmented from the detected corner points. SAM06 and MS06 seem
to be most optimal methods presented in this chapter, which meet the needs of
capturing process. Results of both of the algorithms were compared with five com-
monly referred algorithms and the two methods outperformed in all comparisons.
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Specifically, MS06 was found to be slightly superior to Sam6. The algorithms are
equally useful for any other application employing corner detection.

11.10 Exercises

1. Write a program to implement the following seven corner detectors—BT87,
FD77, RW75, RJ73, CS99, SAM06, and MS06— described in Sections 11.3–
11.6.

2. Test your programs for the test shapes im1, im2, . . . , im8 used in this chapter.
3. Collect six different test images other than those used in this chapter and test

your programs for these test shapes.
4. Using your program in Exercise 11.10.2, verify the results in Table 11.4 using

the parameter settings in Table 11.3.
5. Using your program in Exercise 11.10.2, develop similar results as those in

Table 11.4 using the parameter settings in Table 11.3.
6. Using your program in Exercise 11.10.2, develop similar results as those in

Table 11.4 using the parameter settings other than in Table 11.3.
7. Develop a comparative study between your results obtained in Exercises

11.10.5 and 11.10.6.
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12
Linear Capture of Digital Curves

Abstract. This chapter is devoted to the detailed study of linear or polygonal approxi-
mation needed in various applications, including shape recognition, point-based motion
estimation, coding methods, and so on., in the areas of computer graphics, imaging and
vision. Some important aspects related to capturing with linear approximation have been
addressed. A detailed survey of many methods, in the current literature has been made.
Some commonly referred algorithms have been explained and their results are demon-
strated and compared.

12.1 Introduction

The most appealing representation of information to humans is in a visual form.
Effective computer representation of these visual shapes is an important task.
Boundary representation of shapes and their approximation economizes memory
storage and processing time for subsequent procedures.

The goal of a linear approximation is to capture the essence of boundary shapes
with the fewest possible segments. The term dominant point (DP) is assigned to the
end points of these segments. Linear approximation for closed curves is referred to
as polygonal approximation because approximating line segments joined together
form a polygon. This is one of the popular approaches, which can provide good
representations of 2D shapes at different resolutions. One obvious advantage of
using this approach is high data reduction and its immediate impact on the effi-
ciency of the subsequent feature extraction and/or shape-matching algorithms.
It has been applied in shape recognition, point-based motion estimation, and cod-
ing methods. This representation gained popularity due to its simplicity, locality,
generality and compactness [22].

The development of this approach has its roots back to the research carried
out in psychology toward the study of shape perception and shape understanding.
In one of his experiments, Attneave [1] created the picture of a cat by identifying
high curvature points in an ordinary snapshot, and linking them by line segments.
A human observer easily recognized the resulting sketch. The conclusion was that
those high curvature points are rich in information content, and they are able and
sufficient to characterize a contour. These points are considered as representative

241
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features for the object contours. This idea has been the starting point for most
of the subsequent efforts in this direction. Following Attneave’s [1] observation,
there are many approaches developed for detection of dominant points.

Algorithms on polygonal/linear approximation can be classified into three main
groups, namely, sequential approach, split-and-merge approach and heuristic-
search approach. For sequential approaches, Sklansky and Gonzales [23] pro-
posed a scan-along procedure that starts from a point and tries to find the longest
line segments sequentially. Ray and Ray [11] proposed a method that determines
the longest possible line segments with the minimum possible error. Teh and
Chin [18] determined the region of support for each point based on its local
properties and computed its relative significance (curvature) and finally detected
dominant points by a process of nonmaxima suppression. Kurozumi and Davis [7]
proposed a minimax method that derives the approximating segments by minimiz-
ing the maximum distance between a given set of points and the corresponding
segments. Most of the sequential approaches are simple and fast, but the quality of
their approximating results depends on the location of the point where they start
the scan-along process.

For split-and-merge approaches, Ramer [10] presented a recursive method start-
ing with initial boundary segmentation. At each iteration, the segment was split at
the point that has the farthest distance from the corresponding segment unless
the approximation error is no more than the prespecified error tolerance. Sarfraz
et al. [14] proposed a recursive algorithm in which the longest line segments within
the specified threshold were determined. Common points were marked as domi-
nant points and curve segment was split into subsegments from each dominant
point and processed recursively. Held et al, [24] proposed a split-and-merge tech-
nique in which difference of slope was used to split segments and these were
merged on the criteria of perceptual significance. The approximation results of
the split-and-merge approaches may be far from the optimal one if a poor initial
segmentation is used.

For the heuristic-search approach, an exhaustive search for the vertices of the
optimal polygon from the given set of data points will result in an exponential
complexity. Dunham [25] and Sato [26] used dynamic programming to find the
optimal approximating polygon. However, when the starting point is not specified,
these methods require a worst-case complexity of O(n4) where n is the number
of data points. Some authors [27–30] have used a genetic algorithm for polygonal
approximation of digital curves. Tabu search [31] have been proposed to solve the
polygonal approximation problem and to obtain better results than most of those
due to the local optimal methods. Yin [32] has proposed polygonal approxima-
tion technique using ant colony search algorithm. Heuristic-search algorithms are
computationally expensive and are not guaranteed to be optimal.

This chapter, in addition to the summary of various algorithms in the liter-
ature, is dedicated for the recursive algorithm devised by Sarfraz et al. [14]
for piecewise polygonal approximation of digital curves. For simplicity, the
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algorithm will be called SAMAPA (Sarfraz-Asim-Masood Algorithm for Polygo-
nal Approximation).

Algorithms developed for polygonal approximation and dominant point detec-
tion can be classified into two categories. The first is to extract dominant points by
curvature evaluation [9,11,15,18–20] and second is by fitting the longest straight-
line segments [5, 7, 10, 16, 17, 21]. Extraction of dominant points depends on the
accuracy of curvature evaluation and correct determination of the region of sup-
port at each contour point. It is computationally more expensive and the results
are far from optimal. Polygonal approximation of curves by fitting straight lines is
more logical and is an efficient approach. The SAMAPA technique explained in
this chapter belongs to the second category.

The break points, in this chapter, will be extracted as a preprocessing step
toward polygonal approximation. These break points are the candidates to be
selected as the end points of approximating straight lines. While approximating
the curve with straight lines, it is important to select the best end points of lines
such that the number of line segments and approximation error are minimized. The
polygonal approximation will be carried out in clockwise as well as anticlockwise
directions around the given curve to look for an optimal solution between the two.

The organization of the chapter is as follows. Some important aspects related to
capturing with linear approximation have been addressed in the following section.
The preprocessing stage is discussed in Section 12.2. The polygonal approxima-
tion algorithm is discussed in Section 12.3. Experimental results are evaluated in
Section 12.4. Finally, Section 12.5 concludes the chapter.

12.2 Some Important Issues

Research on polygonal approximation is based on the number of issues that have
a direct impact on the quality and performance of these algorithms. These are
selection of input parameters, finding region of support, error calculation, shapes
to be used for testing, min-# and min-ε problems. A standard algorithm is expected
to address these issues and propose a solution. These issues are described below
in detail.

12.2.1 Input Parameters
Most of the algorithms are based on one or more input parameters. These para-
meters are selected based on the level of detail represented by the digital curve. In
general, it is difficult to find a set of parameters suitable for a curve that consists
of multiple size features. This is a fundamental problem of scale because the fea-
tures describing the shape of a curve vary enormously in size and extent, and there
is seldom a well-defined basis for choosing an appropriate scale (or smoothing)
parameter that correspond to a particular feature size [33]. Some of the researchers
have proposed algorithms that require no input parameters [18, 34–36].
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12.2.2 Region of Support
The determination of the region of support constitutes the major problem in var-
ious dominant point detection algorithms. Although the exact term is attributed
to Teh and Chin [18], a similar concept has been presented by Langridge [38],
who pointed out that each boundary point of a closed curve should have its own
view of the curve. A dominant point should have a view that constitutes a mean-
ingful region of support of the curve and should block the view from neighboring
nondominant points. Rosenberg [39] noted that certain points of a convex blob
perceptually dominate other points of the blob. He further presented methods for
the determination of regions of support with specific reference to convex blobs.

Teh and Chin [18] argued that the detection of dominant points relies primarily
on the precise determination of the region of support. To support their argument,
they applied three different significance measures (k-curvature, 1-curvature and
k-cosine) to different test shapes, and showed that once the region of support is
determined properly, the choice of a particular significance measure does not pro-
duce much difference. Marji and Siy [9] suggested that the choice of the signifi-
cance measure is also an important factor that has to be chosen properly, even in
the presence of an accurate region-of-support measure. They proposed an algo-
rithm for determination of correct region of support, which is sum of the lengths
of the left and right support arms. This issue is addressed in many other places
also [9, 20, 40, 42].

12.2.3 Error Measurement
Error measurement represents the deviation of an approximating polygon from the
original shape. Various types of errors are used for this purpose, depending on the
type of distortion under consideration. Let C = {pi = (xi , yi ), i = 1, . . ., n}}
be the set of points describing a closed curve, where pi+1 is the neighbor of pi
(modulo n). Let p j pk be a straight line of the approximating polygon. The basic
error for that straight line is calculated as a perpendicular distance of all points
between p j and pk from that straight line. Variations of this error measurement in
the polygonal approximation are described as follows:

• Integral square error (ISE): It is used to assess the overall distortion caused by
the approximating polygon. It is defined as:

ISE =
n∑

i=1

ei , (12.1)

where ei is the squared distance of i th curve point from the approximating
polygon.

• Maximum error (MaxError): Maximum error is the maximum deviation of the
approximating polygon from the original curve. It is described as follows:

•
MaxError = n

max
i=1

{ei }, (12.2)

where ei is error in i th point (squared distance).
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• Normalized error (NE): Lowe [43] suggest that long approximating lines
should be permitted greater deviations by dividing them by the length (L) of
the approximating line. It is defined as:

NE = ISE
L

. (12.3)

• Other errors: Few other error measurements are the area between two curves,
the Hausdorff distance and the Euclidean distance.

12.2.4 Min-# and Min-ε Problems
Min-# problem states that for a given boundary, polygonal approximation has a
given number of segments so that the approximation error is minimized. Similarly,
min-ε states that polygonal approximation has a minimum number of segments
so that the approximation error does not exceed a given maximum tolerance ε.
This restriction is applied for optimal algorithms. For the case of open curve, the
min-# and min-ε problems can be solved by dynamic programming [5,44–46] with
the time complexities of O(N 2) to O(N 3), depending on the number of output
segments. In the case of closed curves, we have to find the optimal location of the
starting point also. A straightforward approach is to try all vertices as a starting
point, and to choose the one with minimal error. However, this would multiply the
complexity by N , leading to time complexities of O(N 3) to O(N 4).

12.2.5 Test Shapes
Some shapes are commonly used for demonstration of polygonal approximation
results. These shapes are shown in Figure 12.1. The chromosome-shaped curve in

FIGURE 12.1. Standard shapes used in polygonal approximation: (a) chromosome, (b) leaf,
and (c) semicircle.
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Chain Code for the shape of Chromosome

55454 32011 01111 12112 12006 65655 60010 10765 55455 55555 55431 12122

Chain Code for the shape of Leaf

33332 30700 00003 32307 00003 32322 26776 22212 76661 11116 66566 55000

10056 65655 00110 66565 65555 56667 66666 66664 22222 22222 23224 43433

Chain Code for the shape of semicircle

00007 00777 77766 76666 66665 76766 56454 43436 66656 55454 44434 33232

22254 54434 23221 21322 22222 21221 11111 00100 00

FIGURE 12.2. Chain codes for the shapes of a chromosome, leaf, and semicircle.

Figure 12.1(a) consists of 60 boundary points. Similarly, the leaf in Figure 12.1(b)
and the semicircle in Figure 12.1(c) consist of 120 and 102 points, respectively.
These shapes will be used for demonstration/comparison of results in this chapter.
Shapes in Figures 12.1(a) and 12.1(b) were initially presented by Rosenfeld and
Johnston [41] and the shape in Figure 12.1(c) was presented by Teh and Chin [18].
The Freeman’s chain code [6] of each curve, which constitutes the input to all the
algorithms, was coded in clockwise direction starting from the point marked with
arrow in Figure 12.1. The chain codes of all the shapes are shown in Figure 12.2.

12.3 Approximation Techniques

The subject of polygonal/linear approximation has been explored thoroughly
by the researchers. Polygonal approximation approaches for handling various
problems can be found in literature such as dynamic programming approach
[47, 48], Newton’s method [49], iterative point elimination approach [50], min-
imax approach [51], split-and-merge approaches [52, 53], dominant points or
angle detection approach [54], k–means based-approach [55], genetic algorithm
(GA)-based approaches [27–30], and segment fitting approaches [56, 57]. These
techniques are generally based on curvature measure [11,20,41,42,58], curvature
morphology [59, 60], local neighborhood of curve points in the plane [34, 61],
arc-cord distance [62–64], local symmetry of shapes [65], adaptive Gaussian
smoothing [66], direct chain code analysis [2, 15], neural networks [68], wavelets
[69, 70], fuzzy logic [71], and different search techniques [27–32].

Some of the algorithms [2, 11, 18, 35, 40, 42, 66, 73] have gained more pop-
ularity due to various aspects such as simplicity, efficiency, high compression
ratio and low approximation error. These algorithms are commonly referred to
by the authors and are used for comparison with their results. Results of the pro-
posed algorithm will also be compared with these algorithms in the next chapter.
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A brief summary of more recent and innovative algorithms [18, 40] among them
is given below. Readers are referred to the respective algorithms for details.

12.3.1 Teh and Chin Algorithm
Let the sequence of n integer-coordinate points describe a closed curve C as
follows:

C = {pi = (xi , yi ), i = 1, . . . , n}. (12.4)

The algorithm consists of three steps. These are given as follows:

Step 1: Determining the region of support:

1. Define the length of the chord joining the points pi−k and pi+k as:

lik = |pi−k pi+k | . (12.5)

Let dik be the perpendicular distance of the points pi to the chord pi−k pi+k
2. Start with k = 1. Compute lik and dik until

(a)
lik ≥ li,k+1 (12.6)

or
(b)

dik

lik
≥ di,k+1

li,k+1
, for dik > 0 (12.7)

dik

lik
≤ di,k+1

li,k+1
, for dik < 0 (12.8)

Then the region of support of pi is the set of points that satisfies either
condition (a) or (b); it is given as:

D(pi ) = (pi−k, . . . , pi−1, pi , pi+1, . . . , pi+k). (12.9)

Step 2: Selecting measure of significance.
Three different measures of curvature are used, which are given as
follows:

(a) k cosine measure:

cosik = aik · bik

|aik | |bik | , (12.10)

where aik = (xi−k − xi , yi−k − yi ), bik = (xi+k − xi , yi+k − yi ).
(b) k curvature measure:

CURik = 1
k

−1∑

j=−k

fi− j−1
k

k−1∑

j=0

fi− j , (12.11)

where f is assigned Freeman’s chain code.
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(c) 1 curvature measure:
CURik = fi+1 − fi . (12.12)

Step 3: Performing nonmaximal suppression.
This step consists of three passes. which are as follow:
1st Pass: Perform nonmaxima suppression as follows: retain only those
points pi where

|S(pi )| ≥ ∣∣S(p j )
∣
∣ , (12.13)

for all j such that

|i − j | ≤ ki

2
(12.14)

2nd Pass: Further suppress those points having zero 1 curvature
(CURi1 = 0).
3rd Pass: For those points that have survived after the 2nd pass
if ([ki of D(pi )] = 1) and (pi−1 or pi+1 still survived)
then further suppress pi if (|S(pi )| ≤ |S(pi−1)|) or (|S(pi )| ≤ |S(pi+1)|)
if 1 curvature is selected as a measure of significance
then goto step 4th pass
else those points survived are the dominant points.
4th Pass: For those groups of more than two points that still survived,
suppress all the points except the two end points of each of the groups.
For those groups of exactly two points that still survived,

if (|S(pi )| > |S(pi+1)|)
then suppress pi+1
elseif (|S(pi )| < |S(pi+1)|)
then suppress pi
elseif (ki > ki+1)
then suppress pi+1
else suppress pi

12.3.2 Marji and Siy Algorithm
Let the sequence of n integer-coordinate points be described as a closed curve C
similar to that in Section 12.3.1. The main algorithm is followed by the algorithm
for the region of support. Let p j be the point for which the region of support is to
be determined.

Right region of support:

a. Initially
k = j + 2, Fold = 0, (12.15)

where F represents the objective function.
b. Calculate L jk , the length of the line segment that joins point p j and pk .
c. Calculate E jk , the sum of the squared perpendicular distance from all the points

between p j and pk to the line segment that joins point p j and pk .
d. Calculate Fnew = L jk − E jk .
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e. If Fnew < Fold then return pk−1 as the end support point.
f. Else, set Fold = Fnew, increment k and goto step b.

Left region of support:
Follow the same steps described for the right region of support in the opposite

direction.
Main algorithm:

a. The end points of the right and left support arms are called nodes and their
strength is measured by the frequency of their selection.

b. Initially all points are marked as nondominant and uncovered.
c. If the considered node lies in an uncovered territory, that point is set as domi-

nant and all the points within its region of support are marked as covered.
d. If a support end point is crossed while covering a certain node in any direction,

the overlap segment is further investigated for valid split points. The strongest
nodes in the overlap segment are marked as candidate split points. At the end of
each iteration, candidate split points are marked as dominant point if their per-
pendicular distance to the line that joins the immediate (left and right) dominant
points exceeds 0.95.

e. If the point next to the support end point is also marked, the stronger node is
marked as dominant. If both nodes have the same strength, both are marked as
dominant.

f. If the considered node resides in the covered area, its perpendicular distance to
the line that joins its immediate left and right dominant points is checked. If the
distance exceeds 0.95, then this point is marked as dominant and its domain is
covered.

12.3.3 Wu Algorithm
This algorithm is implemented in three steps.

Step 1: Contour is tracked to find the chain codes of the curve and break points
are extracted. Chain coding is given in Appendix A in detail. Point pi is
a break point if its chain code ci 	= ci−1.

Step 2: The best length of support for each break point is found and its approxi-
mated curvature is computed. The k-cosine (Equation (12.10)) is used to
determine the length of support region. The length of support region lies
between lower bound (Kmin) and the upper bound (Kmax). Let ki be the
best length of support region at the i th point. It can be simply defined as
the following:

ki = k, if cosik = max{cosi j | j = Kmin, . . ., Kmax}, for i = 1, 2, . . ., n.
(12.16)

The region of support of the i th point is the set of points given by

Di = {pi−k, . . ., pi+k}, (12.17)
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The approximated curvature at the i th point, cvi , can be defined by aver-
aging the k-cosines:

cvi cvi = 1
ki

ki∑

j=1

cosi j . (12.18)

Step 3: The redundant dominant points are from the list of candidate dominant
points if one of the following conditions is satisfied:

a.
cvi < ε, (12.19)

b.
cvi < cv j for j ∈ {i − ki , . . . , i + ki }, (12.20)

c.
cvi = cvi−1 and ki < ki−1, (12.21)

d.
cvi = cvi+1 and ki ≤ ki+1, (12.22)

The break points with maximum curvature among their region of support
are marked as the dominant points.

12.3.4 Some Other Algorithms
Some other algorithms, in addition to above three algorithms [18, 36, 40], would
also be briefly discussed and compared from an analysis view. These are mostly
the improvements of the Teh and Chin algorithm [18]. One of the improved ver-
sions of the Teh and Chin [18] algorithm was proposed by Ansari and Huang [2].
In this method, for each boundary point, a support region is assigned to the point
based on its local properties. Each point is then smoothed by a Gaussian filter with
a width proportional to its determined support region. A significance measure for
each point is then computed. Dominant points are finally obtained through non-
maximum suppression. The method does not require any input parameter, and the
dominant points obtained by this method remain relatively the same even when
the object curve is scaled or rotated. The algorithm was compared with Teh-Chin
algorithm in [66] in terms of the computational complexity, the approximation
errors and the number of detected dominant points of an object curve.

Another improved version of the Teh and Chin [18] algorithm proposed by Ray
and Ray [11] determines the support region by the k-cosine itself and the signif-
icant points are detected with the help of the smoothed k-cosine. The procedure
is parallel and requires no input parameter. It detects not only the curvature max-
imum points, but also the curvature minimum points. A polygonal approximation
is suggested by joining the successive significant points. Ray and Ray proposed
another algorithm [60] that introduced the concept of an asymmetric region of
support and k-l-cosine which is the angle between the k-vector and the 1-vector
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of the point of interest. The dominant points are the local maxima of k − l-cosine.
The procedure needs no input parameter and remains reliable even when features
of multiple sizes are present.

Sarkar [15] proposed a simple but efficient method for detection of significant
points of chain-coded curves. The algorithm is based on manipulation with chain
codes only. The polygonal approximation is achieved by joining successive signif-
icant vertices. Cornin [4] pointed out that, as far the Teh and Chin algorithm [18],
the Ray and Ray [11] algorithm is not robust in presence of noise. In addition,
the procedure for choosing three consecutive increasing angles in the Ray and
Ray algorithm is subjective. In his method, the concavity code was constructed
from the chain code to classify the degree of concavity or convexity of boundary
coordinates. Dominant points are then extracted by throwing away points one at a
time that contribute the least curvature to the boundary shape, using an appealing
technique called error budgeting.

12.4 Piecewise Polygonal Approximation

This section is dedicated to the recursive algorithm, devised by Sarfraz et al. [14],
for piecewise polygonal approximation of digital curves. For simplicity, the algo-
rithm will be called SAMAPA (Sarfraz-Asim-Masood Algorithm for Polygonal
Approximation). The SAMAPA technique belongs to the category of polygonal
approximation of curves by fitting straight lines. It is more logical and is an effi-
cient approach.

The break points, in SAMAPA, are extracted as a preprocessing step toward
polygonal approximation. These break points are the candidates to be selected
as the end points of approximating straight lines. While approximating the curve
with straight lines, it is important to select the best end points of lines such that
the number of line segments and approximation errors are minimized. The polyg-
onal approximation is carried out in clockwise as well as anticlockwise directions
around the given curve to look for an optimal solution between the two.

12.4.1 Preprocessing Stage
Break points (BP) and initial dominant points (IDP) are extracted in this pre-
processing stage. The extracted BPs are the only candidate points to be taken as
the end points of approximating straight lines and IDPs are the start points for this
algorithm. This preprocessing will considerably reduce the subsequent computa-
tion of polygonal approximation.

BP are the nonlinear points along the curve. To find BP, we assign Freeman’s
chain code [6], Ck varying from 1 to 7, to each contour point Pi , according to the
direction of the next point Pi+1. From the chain-coded contour points if abs(Ck −
Ck+1) = 0, then it is a linear point; otherwise it is break point.

The point(s) with angle of 135◦ are marked as IDP. It can be calculated from
chain-coded contour points. If abs(Ck − Ck+1) = (3 or 5) then the angle is 135◦.
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FIGURE 12.3. Single line, double line and shaded circles are the linear points, BP and IDP,
respectively.

If no point is found with the 135◦ angle, then the point(s) with angle of 90◦ are
selected as IDP. If abs(Ck − Ck+1) = (2or6) then the angle is 90◦. In the worst
case, if the points with 90◦ angle are not available then the first BP is selected as
IDP. Figure 12.3 shows the extracted linear points, BP and IDP.

12.4.2 SAMAPA Algorithm
The curve is split into segment(s) at each IDP and an independent polygonal
approximation is performed for each segment. The SAMAPA algorithm is divided
into two steps explained as follows:

Step I: The first step is to perform segment approximation to find the farthest
end points of approximating straight lines such that the maximum perpendicular
squared distance from all the points between two end points to the line joining
end points is less than the given threshold value (ε). Segment approximation is
performed in a clockwise direction (from first point to the last point of segment)
and in an anticlockwise direction (from last point to the first point of segment).
Pseudo-code for segment approximation in the clockwise direction is given as
follows (algorithm for anticlockwise direction will also be on similar lines):

Pseudo-Code for a Function SegAppxC( )

COMMENTS START
EP End points, i.e., EP-1 and EP-2
DPmax Maximum perpendicular squared distance among all the points

between end points to respective line joining end points.
DPC List of dominant points in clockwise direction.
ε Threshold, default value is 0.7
DPC-new New list of detected dominant points in clockwise direction.
MaxError() Function maximum error – Finds the maximum perpendicular

squared distance between two segments
COMMENTS END
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Function DPC = SegAppxC(Segment)
DPC = [ ]
Do
EP-1 = first point of segment
EP-2 = next BP in sequence
DPC−new = [ ]
Do
Do
Calculate Dmax
If Dmax < ε

P = EP-2
End If

EP2 = next BP
While ((Dmax < 2∗ε) OR (End of Segment))

EP-1 = P
Add P in the list DPC-new
While (End of Segment)
If isempty (DPC)
DPC = DPC−new
End If
ε = MaxError ( )
While Length (DPnew) == Length(DPC)

Step II: The second step is to find an optimum solution between the two seg-
ment approximations. The pseudo-code for the complete SAMAPA algorithm, as
a recursive function “SAMAPA()”, is given as follows:

Pseudo-Code for the Function SAMAPA( )

Function DP = SAMAPA(Segment)
DP = [ ]
DPC = SegAppxC(Segment)
DPA = SegAppxA(Segment)

If DPC ∪ DPA = φ
DP = segment end points
Return DP

End If
If DPC ∩ DPA 	= φ
Divide segment into subsegments at (DPC ∩ DPA)
For (each subsegment)
DP = DP + SAMAPA(subsegment)
End For
Return DP
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ElseIf
Length (DPC) 	= Length (DPA)

If Length (DPC) < Length (DPA)
DP = DPC

Else
DP = DPA

End IF
Else

DP2 = Sort (D PC ∪ D PA)
Make pair(s) of DP2 (two consecutive points make one

pair)
Select one point from each pair(s) so that it minimizes

integral square error.
End IF

In this function, end points of the approximating straight lines are determined
first, from the two-segment approximations (clockwise and anticlockwise). Seg-
ments are divided into sub-segments at the common end points and processed
again recursively. Results of this approximation can be seen in Figures 12.4(h),
12.5(h) and 12.6(h) for three shapes, namely, chromosome, leaf, and semicircle,
respectively.

dba
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FIGURE 12.4. Results of under comparison algorithms for the shape of a chromosome:
(a) Marji and Siy [9] algorithm, (b) Teh and Chin [18] algorithm, (c) Ansari and Huang
[2] algorithm, (d) Sarkar [15] algorithm, (e) Cronin [4] algorithm, (f) Ray and Ray [11]
algorithm, (g) Wu [20] algorithm, (h) SAMAPA [14] algorithm.
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FIGURE 12.5. Results of under comparison algorithms for the shape of a leaf: (a) Marji and
Siy [9] algorithm, (b) Teh and Chin [18] algorithm, (c) Ansari and Huang [2] algorithm,
(d) Sarkar [15] algorithm, (e) Cronin [4] algorithm, (f) Ray and Ray [11] algorithm, (g)
Wu [20] algorithm, (h) SAMAPA [14] algorithm.
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FIGURE 12.6. Results of under comparison algorithms for the shape of a semicircle: (a)
Marji and Siy [9] algorithm, (b) Teh and Chin [18] algorithm, (c) Ansari and Huang [2]
algorithm, (d) Sarkar [15] algorithm, (e) Cronin [4] algorithm, (f) Ray and Ray [11] algo-
rithm, (g) Wu [20] algorithm, (h) SAMAPA [14] algorithm.
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12.5 Experimental Results

The quality of polygonal approximation can be measured by the amount of data
reduction and approximation error. Sarkar [15] combined the two measures using
figure of merit (FOM). The SAMAPA algorithm is compared with others on the
basis of the following evaluation criteria as done by Marji and Siy [9] and also
used by Wu [20]:

• Number of dominant points (Dom Pts): The extracted end points of the approx-
imating straight lines.

• Compression ratio (CR): One of the objectives of polygon approximation is data
reduction. Larger compression ratio means high data reduction. It is defined as
follows:

C R = T otal Pts
Dom Pts

.

• Maximum error (MaxError): This is described in Section 12.2.3.
• Integral Square Error (ISE): This is described in Section 12.2.3.

Visual comparison of the results of the SAMAPA algorithm, with some com-
monly referred algorithms, namely, the Ansari-Huang [2] algorithm, Teh-Chin
[18] algorithm, Cronin [4] algorithm Marji-Siy [9] algorithm, Ray-Ray [11] algo-
rithm, Sarkar [15] algorithm, and Wu [20] algorithm, for the shape of chromo-
somes are shown in Figure 12.4. Visual comparisons of the results of two other
popular shapes, leaf and semicircle, are shown in Figures 12.5 and 12.6 respec-
tively.

The quantitative comparisons of SAMAPA algorithm with those in [2, 4, 9,
11, 15, 18, 20], for the shapes of chromosome, leaf and semicircle, are shown
in Tables 12.1, 12.2 and 12.3, respectively. These tables show the results of the
SAMAPA algorithm at the default threshold. It can be seen that number of domi-
nant points extracted are almost the lowest with improved ISE and FOM.

As compared to the straighter arcs, circular arcs result in higher ISE even with a
greater number of dominant points. Thus, Sarkar’s FOM [15] is a suitable measure
to compare approximation results only with the same number of dominant points

TABLE 12.1. Comparative results of the chromosome shape.

Shape Method Dom CR Max ISE FOM
Pts Error

Chromosome SAMAPA [14] 12 5 0.79 5.82 0.86
Ansari & Huang [2] 16 3.75 2 20.3 0.19
Teh &Chin [18] 15 4.00 0.74 7.2 0.57
Cronin [4] 17 3.53 0.63 3.18 1.11
Marji & Siy [9] 11 5.45 0.90 9.96 0.55
Ray & Ray [11] 18 3.33 0.71 5.57 0.60
Sarkar [15] 19 3.16 0.55 3.86 0.82
Wu [20] 17 3.53 0.64 5.01 0.70
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TABLE 12.2. Comparative results of the leaf shape.

Shape Method Dom Pts CR Max Error ISE FOM
Leaf SAMAPA [14] 21 5.71 0.78 13.6 0.42

Ansari and Huang [2] 30 4.00 2.13 25.6 0.16
Teh and Chin [18] 29 4.14 0.99 14.96 0.28
Cronin [4] 28 4.29 0.74 7.30 0.59
Marji and Siy [9] 21 5.71 0.78 14.1 0.40
Ray and Ray [11] 32 3.75 1 14.7 0.26
Sarkar [15] 23 5.22 0.784 13.1 0.40
Wu [20] 23 5.22 1 20.34 0.23

TABLE 12.3. Comparative results of the semicircle shape.

Shape Method Dom Pts CR Max Error ISE FOM
Semicircle SAMAPA [14] 19 5.37 0.74 12.9 0.42

Ansari and Huang [2] 28 3.64 1.26 17.8 0.20
Teh and Chin [18] 22 4.64 1 20.6 0.23
Cronin [4] 30 3.40 0.485 2.91 1.17
Marji and Siy [9] 18 5.67 1 24.2 0.23
Ray and Ray [11] 29 3.52 0.833 11.8 0.30
Sarkar [15] 19 5.37 1.474 17.4 0.31
Wu [20] 27 3.78 0.83 9.01 0.42

TABLE 12.4. Quantitative results of the SAMAPA method for chromosome shape at dif-
ferent thresholds.

Shape SAMAPA Method Dom Pts CR Max Error ISE FOM
Chromosome ε = 1 11 5.45 0.89 7.78 0.70

ε = 0.9 11 5.45 0.89 7.78 0.70
ε = 0.8 12 5 0.79 5.82 0.86
ε = 0.7 (default) 12 5 0.79 5.82 0.86
ε = 0.6 13 4.62 0.75 4.81 0.96
ε = 0.5 14 4.29 0.69 4.82 0.89
ε = 0.4 15 4 0.63 4.14 0.97
ε = 0.3 16 3.75 0.51 3.84 0.98
ε = 0.25 19 3.16 0.45 2.68 1.18

in the same shape. However, if an algorithm produces better ISE with lesser num-
ber of dominant points for the same shape, the algorithm proves itself better. For
a meaningful evaluation of results, approximation results of SAMAPA algorithm
at different thresholds are shown in Tables 12.4, 12.5 and 12.6 for the shapes of
chromosome, leaf, and semicircle, respectively.

For the shape of the chromosome, the results of the SAMAPA algorithm prove
better as compared to Ansari-Huang [2], Teh-Chin [18], Marji-Siy [9] and Sarkar
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TABLE 12.5. Quantitative results of the SAMAPA method, for leaf shape, at different
thresholds.

Shape SAM [14] Method Dom Pts CR Max Error ISE FOM
Leaf ε = 1 19 6.32 0.99 16.63 0.38

ε = 0.9 20 6 0.89 15.73 0.38
ε = 0.8 21 5.71 0.78 13.57 0.42
ε = 0.7 (default) 21 5.71 0.78 13.57 0.42
ε = 0.6 22 5.45 0.74 11.47 0.48
ε = 0.5 25 4.8 0.69 9.67 0.50
ε = 0.43 29 4.14 0.63 6.63 0.62
ε = 0.4 30 4 0.59 6.13 0.65
ε = 0.31 32 3.75 0.55 5.14 0.73

TABLE 12.6. Quantitative results of the SAMAPA method, for a semicircle shape, at dif-
ferent thresholds.

Shape SAM [14] Method Dom Pts CR Max Error ISE FOM
Semicircle ε = 1 17 6 0.85 15.01 0.40

ε = 0.9 17 6 0.85 15.01 0.40
ε = 0.8 17 6 0.85 15.01 0.40
ε = 0.7 (default) 19 5.37 0.74 12.93 0.42
ε = 0.6 19 5.37 0.74 12.93 0.42
ε = 0.55 21 4.86 0.72 9.82 0.49
ε = 0.5 24 4.25 0.66 6.18 0.69
ε = 0.43 26 3.92 0.63 4.91 0.80
ε = 0.4 29 3.52 0.63 3.41 1.03

[15] at the threshold of 0.3, 0.4, 0.9 and 0.25, respectively. It can be seen that
the SAMAPA algorithm at threshold of 0.3 gives ISE = 3.84 with 16 dominant
points, which is better that Wu [20] with 18 dominant points and Ray-Ray [11]
with 17 dominant points. Thus, the results are better than Wu and Ray-Ray also.
It is difficult to compare with Cronin [4] but looking at the results at threshold of
0.3 and 0.25 gives some idea of the results of SAMAPA algorithm as compared to
Cronin.

For the shape of a leaf, the results of the SAMAPA algorithm prove better as
compared to the Ansari-Huang [2], Teh-Chin [18], Marji-Siy [9] and Ray-Ray [11]
at the threshold of 0.4, 0.43, 0.7 and 0.55, respectively. At a threshold of 0.6 the
ISE = 11.47 with 22 dominant points; the ISE is better than Sarkar [15] and
Wu [20] even with 23 dominant points. Thus, the results are better than Sarkar [15]
and Wu [2] too. Again the results with 28 dominant points were not available with
the SAMAPA algorithm at any threshold to compare with Cronin [4].

For the shape of a semicircle, the results of the SAMAPA algorithm prove bet-
ter as compared to Ray-Ray [11] and Sarkar [15] at the threshold of 0.4 and 0.6
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respectively. The results also prove better with even lesser number of dominant
points than Ansari-Huang [2], Teh-Chin [18], Marji-Siy [9] and Wu [20] at thresh-
old of 0.3, 0.55, 0.8, and 0.43. The results of the SAMAPA algorithm at threshold
of 0.3 and Cronin [4] are the same. The algorithm by Cronin [4] looks to perform
better in all three shapes but it can be seen that the number of dominant points
detected by Cronin are always larger.

Another additional advantage of the SAMAPA algorithm is its computational
efficiency. Break points are selected in the start and only these points, as candi-
date end points of approximating straight lines, are considered during the further
processing of polygonal approximation algorithm. As the given curve is divided
into pieces and processing of each piece of curve is independent from other pieces;
therefore parallel processing can be applied.

12.6 Optimal Algorithms

Polygonal approximation is a common and efficient representation of digital
curves. A problem with natural interest is the detection of optimal polygonal
approximation. Optimal approaches tend to find the optimal polygonal approxima-
tion based on specified criteria and error-bound constraints. One desired criterion
for optimality is approximation with minimal number of vertices, distant from
the original curve by no more than a prespecified value. The optimal polygonal
approximation is formulated as an optimization problem, which seeks to minimize
the error measure of fitness by locating a given number of vertices. This problem
can be solved by using a dynamic programming [4, 8, 73, 74], A∗, search [75], or
by algorithms developed for the shortest-path problem in digraph [76–78].

12.6.1 Dynamic Programming
The problem of polygonal approximation of digital curves is stated as follows:
given a digital curve of N points, find M vertices amount them so that the polygon
constructed by directly connecting these vertices best fits the given digital curve.
The set of N given points is denoted by

S = {s1, s2, . . . , sN } = {(xs
1, ys

1), (xs
2, ys

2), . . . , (xs
N , ys

N )}, (12.23)

The set of M vertices to be found among S is denoted by

V = {v1, v2, . . . , vM } = {(xv
1 , yv

1 ), (xv
2 , yv

2 ), . . . , (xv
M , yv

M )}, (12.24)

The fitting error of the kth edge is denoted by e(vk, vk+1), which is the sum
of error norms from each point between vk and vk+1 to the corresponding edge
vkvk+1. The norm used is the integral square error. The polygonal approximation
problem is formulated as follows: given a point set S of size N , find a subset V of
size M from S, where v1 = s1 and vM = sN , such that the total error measure is
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minimized. That is, we seek to find the minimum error measure as follows:

E(N , M) = min
V ⊂S

M−1∑

K=1

e(vk, vk+1). (12.25)

The dynamic programming technique can be applied to find the globally optimal
solution of the above problem. Dynamic programming is an optimization method
that makes an optimal decision based on all possible previous states with a proper
recurrence relation. The following recursive function can be applied to solve the
given problem:

E(n, m) = min
m−1≤ j≤n−1

[E( j, m − 1) + e(s j , sn)], (12.26)

where E(n, m) denotes the minimum error of fitting first n points by using m
vertices, E( j, m − 1) denotes the minimization error of fitting first j points by
using m − 1 vertices, and e(s j , sn) denotes the error of fitting the curve segment
between s j and sn by a single edge. The value of j ranges from m − 1 to n − 1,
which is the possible range of distributing first m − 1 vertices. The principle of
dynamic programming is to derive E(., m) from E(., m − 1) recursively. E(n, m)
is found by adjusting j , such that the sum of E( j, m − 1) and s(s j , sn) reaches
the minimum value. This process is initialized with E(1, 1) = 0 and E(n, 1) =
+∞ for n = 2, . . ., N ; and is terminated at E(N , M). The number of vertices m
must be smaller than or equal to the number of points n. As a result, the dynamic
programming fills up the lower triangle of the array E(., .) with size N × M . The
value of E(N , M) is the global minimum error of fitting the given digital curve of
length N by using a polygon of M vertices.

12.6.2 Perez and Vidal Algorithm
The work of Perez and Vidal is based on dynamic programming [8]. It is a well-
known approach to define an algorithm that finds optimal results according to a
specific criterion. Perez and Vidal algorithm is described as follows:

g[1, 0] = 0;
FOR n = 2 TO NP DO g[n, 0] = MaxReal;
(∗arbitrary high value for initialization ∗)
FOR m = 1 TO NS DO

FOR n = 2 TO NP DO
BEGIN

(∗Search for the minimum error to reach point n with m segments:∗)
g[n, m] = Min{ g[i, m − l] + error(i, n)/i ∈ [m, n − l] }
Father[n, m] = mini

END;
TotalError = g(n, m];
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For a clear understanding of the method, some important variables are presented
as follows:

• g: array[1. . . NP, 0. . . NS] of real; g is used to memorize the minimum global
error to reach any point of the contour, using any number of segments. For
instance, g[30, 4] is the minimum global error to reach the 30th point using
four line segments.

• Points: array[1. . . NP] of RPoint; RPoint is a structure with x and y coordinates.
• Father: array[1. . . NP, 1. . . NS] of integer; This array is used to memorize the

starting point of the last segment. For instance, Father[30,4] is the number of
the starting point of the 4th segment, the 30th being the ending point.

The Perez and Vidal algorithm employs dynamic programming, which has two
major problems. First, in applying dynamic programming, the number of ver-
tices to locate should be assigned a priori. This parameter value is hard to predict
since the suitable number of vertices varies from case to case and depends largely
on the geometric size and features of the given digital curve. Second, the dynamic
programming is time consuming, especially while dealing with closed curves. All
possible initial points should be examined to achieve the global minimum fitting
error.

12.6.3 Some Remarks on Optimal Algorithms
A global optimum is the major advantage of the dynamic programming approach.
However, this approach suffers from two severe problems. First, the proper num-
ber of vertices is hard to decide a priori. Secondly, the computational complex-
ity is much higher than other existing methods. The time complexity of applying
dynamic programming to polygonal approximation is in the order of O(MN3). The
main task is to fill up the array E(.,.) of size N × M .

Each entry of array involves the O(N 2) computation of Equation (12.26). For
fitting close curves, an additional outer loop of size N is required to obtain a proper
initial point that minimizes the global fitting error. The overall time complexity of
constructing optimal polygonal approximation of closed digital curves by order of
O(MN4). Thus, in its present form, applying this algorithm on large digital curves
extracted from real images is impractical.

The problem of finding the minimum error of the best line segment approximat-
ing a curve is addressed in optimal algorithm by Perez and Vidal [45]. Unfortu-
nately, a mathematical analysis of the error function shows that this minimum is
hard to find. However, it is possible to determine a lower-bound on the error. The
values of the least-square errors of both regression lines are required. The compu-
tation of the lower-bound is given by Salotti [75] and he uses the lower-bound, in
his A∗ algorithm, to speed up the search and reduce the complexity. Various other
improvements can be found in [4,76–79]. To sum up, the proposed approaches for
closed curves are suboptimal, whereas the optimal choice of the starting point is
time-consuming. Thus, the problem still remains unsolved.
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12.7 Summary

Capturing with linear/polygonal approximation was covered in this discussion.
In addition to providing a general overview of the topic, some algorithms
were described that are subsequently used for comparison with the SAMAPA
algorithm in this chapter. Piecewise polygonal approximation is a split-and-merge
type of technique implemented by a recursive algorithm. Comparative study in
Section 12.5 demonstrates that results of the SAMAPA technique are much better
than for its predecessors.

12.8 Exercises

1. Write a program to implement the Freeman’s chain code method and verify the
code for the test shapes of chromosome, leaf, and semicircle in Figure 12.2.

2. Collect three different test images than those used in this chapter and compute
their chain code using the program of Exercise 12.8.1.

3. Write programs to implement the Teh and Chin, Marji and Siy, Wu, and
SAMAPA algorithms described in Sections 12.3–12.4.

4. Test your programs of Exercise 12.8.3 for the test shapes of chromosome, leaf,
and semicircle used in this chapter.

5. Test your programs of Exercise 12.8.3 for the test shapes of Exercise 12.8.2.
6. Using your program in Exercise 11.10.2, verify the results in Tables 12.1–12.6.
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13
Digital Outline Capture with Cubic
Curves

Abstract. In this chapter, an automatic and efficient algorithm for outline capture of
character images, stored as bitmaps, is presented. This method is well suited for characters
of non-Roman languages such as Arabic, Japanese, Urdu, Persian, and so on. Contem-
porary word processing systems store shapes of characters in terms of their outlines, and
outlines are expressed as cubic Bézier curves. The process of capturing outlines includes
various steps including detection of the boundary, finding corner points and break points,
and fitting the curve. The chapter discusses automating the above process to provide opti-
mal results. As an alternate smoother scheme, the Hermite cubic spline curve scheme has
also been introduced.

13.1 Introduction

Fonts are an essential part of any computer system. Two fundamental approaches
to storing fonts on a computer are bitmap and outline [1, 2]. In bitmap fonts, each
character is stored as an array of pixels (a bitmap). Outline fonts describe the
character outlines [18–29] with a combination of control points and curves. Out-
line representation has many advantages over the bitmap approach such as scaling,
shearing, translation, rotation, and clipping. Therefore, most contemporary desk-
top publishing systems are based on outline fonts.

Characters of non-Roman languages are complex and their cursive nature
requires much more attention. In traditional font design, a character is drawn ini-
tially on paper by hand and then it is scanned to obtain a gray-level image. From
this gray-level image, the boundary, or contour, of the character is obtained. Then
corner points of the character are determined from the contour. These corner
points can be obtained by some interactive method or by some automated corner
detection algorithm [3,4]. Curve fitting is done by segmenting the boundary at the
corner points and fitting the parametric curve to these points.

This chapter includes an automatic algorithm [18] to obtain the outline of
bitmap characters. The algorithm presented improves the work done in [5,6]. The
methodology adopted in this chapter gives a higher level of accuracy and speed

267
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compared with traditional approaches. Corner points are sometimes not sufficient
to fit the curve, and a few additional points are needed to achieve a best fit. This
chapter, in addition to corner points, identifies these additional points called break
points. So the set of significant points consists of corner points and break points.
Segmentation is done at significant points, and the cubic Bézier is used for curve
fitting. The least square method is used to achieve the best fit. In the case when
the fitted curve is not the desired shape, reparameterization improves the fit, and
then break points are used ultimately to achieve the desired level of accuracy.

The algorithm of automatic approximation of the boundary of digital character
images consists of the following steps.

1. Finding the boundary of the bitmap image
2. Detecting the corner points
3. Filtering noise
4. Curve fitting with a cubic Bézier
5. Reparameterization
6. Breaking segments

Steps 4-6 are iterative steps. Initially, the curve is fitted to only corner points, but
if the fit is not up to the desired tolerance limit, then reparameterization is done.
If needed, break points are determined and the curve is fitted to significant points
(i.e., corner points and break points).

Since the Bézier curve scheme described above is not actually a smooth scheme
at the joints of the segments, some alternate smoother scheme may be needed,
which may be more useful for some applications such as smoother or blobby
objects. A C1 smooth scheme [??] has been described that uses a Hermite-like
spline as a modeler. The scheme can be implemented in the same way as the
Bézier curve scheme described above. It computes the tangent vectors and finds
the intermediate points in the segments, keeping account of the error minimiza-
tion. Although least square error has not been used for optimizing tangents, one
can attempt this in a similar manner to what was done in the Bézier curve scheme.

The organization of the chapter is as follows. Section 13.2 discusses finding the
boundary of bitmap images. Discussion of the corner detection process can be
found in Section 13.3. Section 13.4 addresses the issue of noise filtering. The core
of the algorithm, that is, the curve-fitting process, is elaborated in Section 13.5.
The reparameterization step is described in Section 13.6. The issue of when and
how to break the segments is discussed in Section 13.7. An alternate approach
using the Hermite cubic is described in Section 13.8. The issue of transformation
is discussed in Section 13.9. The chapter is summarized in Section 13.10.

13.2 Finding the Boundary of a Bitmap Image

A bitmap image of a character can be obtained by creating a bitmap character in
some program such as Paint or Adobe Photoshop. Alternatively an image drawn
on paper can be scanned and stored as a bitmap. Both methods are recommended.
The quality of the bitmap image obtained directly from an electronic device
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FIGURE 13.1. Bitmap image.

FIGURE 13.2. Detected boundary of the image of Figure 13.1.

depends on the resolution of device, type of image (e.g., BMP, JPEG, TIFF, etc.),
the number of bits selected to store the image, and so on. The quality of the
scanned image depends on factors such as the quality of the image on the paper,
and the scanner and attributes set during scanning. Figure 13.1 shows the bitmap
image of an Arabic word.

In order to find the boundary of a bitmap image, first its chain code is extracted
[7,8]. Chain codes are a notation for recording the list of edge points along a con-
tour. The chain code specifies the direction of a contour at each edge in the edge.
From the chain-coded curve, boundary of the image is found [9]. The selection
of boundary points is based on their corner strength and contour fluctuations. The
input to boundary detection algorithm is a bitmap image. The algorithm returns
number of pieces in the image. And for each piece, number and values of these
boundary points:

pi = (xi , yi ) , i = 1, 2, . . . , N , (13.1)

are determined. For example, Figure 13.2 shows the detected boundary of the
image of Figure 13.1.
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13.3 Detecting Corner Points

In the next important step of algorithm design, corner points are detected from the
boundary points. The corner points are those points that partition the boundary into
various segments. A number of approaches have been proposed by researchers for
corner detection [3, 4, 10–12]. The details of various algorithms were provided in
Chapter 11. The reader should refer to Chapter 11 for the choice of algorithm. The
SAM06 algorithm in Section 11.5 has been selected for the purpose of this chapter.

The demonstration of the SAM06 algorithm is made in Figure 13.3, which
shows detected corner points obtained from boundary of Figure 13.2. Similarly,
Figure 13.4(b) is representing the outline together with the detection of corner
points of the image in Figure 13.4(a). Figure 13.5(b) represents the outline together
with the detection of corner points of the image in Figure 13.5(a).

FIGURE 13.3. Corner points shown with circles.

FIGURE 13.4. (a) Bitmap image of character “S.” (b) Outline of the image “S” together
with corner points shown with circles.
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(a) (b)

FIGURE 13.5. (a) Bitmap image of an Arabic word. (b) Outline of the image together with
corner points shown with circles.

13.4 Filtering Noise

The points obtained by extracting the boundary of the bitmap image may have
noise (due to jagged edges). There are many sophisticated techniques [13, 14] to
filter out the noise from the image/contour. The technique adopted here is known
as an approximation to a Gaussian filter, which is simple and computationally
efficient. Sample data of boundary (except corner points) is passed through the
filter to remove noise. Mathematically, one can express the Gaussian filter as
follows:

xi = 0.5xi + 0.25xi+1 + 0.25xi−1, yi = 0.5yi + 0.25yi+1 + 0.25yi−1. (13.2)

The filter spreads out the local variation by replacing each point with a half-
weighted average of its own value and a quarter-weighted averages of its imme-
diate neighbor point values. The filtering process is repeated a number of times.
By experimentation, it has been found that six to ten iterations are enough to fil-
ter noise. One can argue that noise can be filtered before detection of the corner
points and then detecting corner points from filtered data. But, by experiments,
it has been found more suitable to detect the corner points first and then filter
the noise from points other than the corner points. Due to this strategy, corner
points are detected more accurately and the overall shape of character is more
intact.

The system, presented in this chapter, works quite well even without filtering
any noise from the sample data. Filtering improves the performance of the system
by needing a smaller number of significant points. Figure 13.6 shows the second
piece of boundary without applying noise filtering. Figure 13.7 shows the second
piece of boundary after applying noise filtering up to six iterations.
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FIGURE 13.6. Second piece of boundary without noise filtering (magnified view).

FIGURE 13.7. Second piece of boundary with noise filtering (magnified view).

13.5 Curve Fitting with Cubic Bézier

Curve fitting is a well-studied area in computer graphics and mathematics. Dif-
ferent types of curves and techniques have been proposed by various authors. For
example, the details of curve fitting with splines are given in [15] and the use
of piecewise parametric cubics is made in [16]. A recursive algebraic curve-fitting
method is proposed in [17]. In this chapter, Bézier cubics have been used for curve
fitting. This is because they are computationally efficient and have a high level of
accuracy when approximating character shapes.

The boundary points of each piece are divided into groups, called segments,
and fit a cubic Bézier curve to each segment. The division is based on corner
points. It means that if there are m corner points cp1, . . . , cpm , then there will be
m segments seg1, . . . , segm . For example, the first segment has all the boundary
points between the corner point cp1 and the corner point cp2, inclusive. The second
segment has all the boundary points between the corner point cp2 and the corner
point cp3 inclusive. Likewise, the last segment has all the boundary points between
the corner point cpm and the corner point cp1 inclusive. Of course, corner points
obey the order of boundary points. The situation is illustrated in Figure 13.8 for the
second piece of Figure 13.2. If boundary points of the kth segment are pu, . . . , pw,
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FIGURE 13.8. Division of the boundary into segments based on corner points.

then (13.3) describes the relationship between the boundary points and the corner
points, and (13.4) is used to count the number of points in the kth segment:

pu = cpk for 1 ≤ k < m;
pw =

{
cpk+1 for 1 ≤ k < m;
cp1 if k = m.

(13.3)

nk =
{

w − u + 1 if w ≥ u;
N − u + 1 + w if w < u.

(13.4)

The process of fitting a cubic Bézier curve is similar to all the segments. More
explanations of how to process for the kth segment, are given in the follow-
ing sections.

13.5.1 Finding Intermediate Control Points
The Bézier form of a cubic polynomial curve has four control points P0, P1, P2
and P3. The Bézier curve interpolates the two end control points P0 and P3, and
approximates the two intermediate points, P1 and P2. The two end control points
are the two corner points of the curve segment. But, the two intermediate control
points of the fitted Bézier cubic curve need some processing to be manipulated.
Mathematically, a Bézier cubic curve can by written as follows:

Q(t) =
3∑

k=0

Pk Bk = (1 − t3)P0 + 3t (1 − t2)P1 + 3t2(1 − t)P2 + t3 P3, (13.5)
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where 0 ≤ t ≤ 1, P0 = pu, P3 = pw for the kth segment, the boundary points of
which are pu, . . . , pw. Let

Pi = (Pxi , Pyi ),

and
Q(t) = (Qx (t), Qy(t)),

then (13.5) can be expressed as follows:

Qx (t) = (1 − t3)Px0 + 3t (1 − t2)Px1 + 3t2(1 − t)Px2 + t3 Px3, (13.6)

Qy(t) = (1 − t3)Py0 + 3t (1 − t2)Py1 + 3t2(1 − t)Py2 + t3 Py3 . (13.7)

As far as parameterization is concerned, the choice of chord-length parameteri-
zation has been adopted. Thus, the parametric value t , associated with each point
pi , can be to estimated as follows:

ti =

⎧
⎪⎪⎨

⎪⎪⎩

0, if i = u;
|pu pu+1| + |pu+1 pu+2| + · · · + |pi−1 pi |
|pu pu+1| + |pu+1 pu+2| + · · · + |pw−1 pw| , for u + 1 ≤ i ≤ w − 1;
1, if i = w.

(13.8)
It is obvious that the number of points in the kth segment (i.e., nk) and the number
of t values associated with them are same.

The goal here is to approximate the boundary of the original image by a para-
metric curve in an optimal way. To achieve this goal, one needs to find the values
of P1 and P2 that minimize the distance between the boundary and parametric
curve. For this purpose, the least square method has been used. That is, one can
define the sum of squared distances S from the boundary to the parametric curve.
Mathematically, it can be expressed as follows:

S =
w∑

i=u

[Qi (t) − pi ]2,

=
w∑

i=u

[Qxi (t) − pxi ]2+
w∑

i=u

[Qyi (t) − pyi ]2.

(13.9)

The goal is to minimize S. It is required to find partial derivatives of (13.9) with
respect to P1 and P2 and equate them to zero as follows:

∂S
∂ P1

= 0, (13.10)

∂S
∂ P2

= 0. (13.11)

The solution will provide the values of P1 and P2 that approximate the boundary
by a parametric curve in the best way for given values of t . Now, manipulating
Equation (13.15) yields the following:

∂S
∂ P1

= 2
w∑

i=u

∂ Q(ti )
∂ P1

[Q(ti ) − pi ] = 0,
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which implies
w∑

i=u

B1(ti )[Q(ti ) − pi ] = 0. (13.12)

Manipulating Equation (13.16) yields following:

∂S
∂ P2

= 2
w∑

i=u

∂ Q(ti )
∂ P2

[Q(ti ) − pi ] = 0,

which implies
w∑

i=u

B2(ti )[Q(ti ) − pi ] = 0. (13.13)

Let

Ak =
w∑

i=u

[Bk(ti )]2,

A1,2 =
w∑

i=u

[B1(ti )B2(ti ),

Cxk =
w∑

i=u

[Bk(ti )[pxi − B0(ti )Px0 − B3(ti )Px3], Cyk

=
w∑

i=u

[Bk(ti )[pyi − B0(ti )Py0 − B3(ti )Py3].

Then, solving (13.13) and (13.13) for P1 and P2 gives the following:
[

A1 A1,2
A1,2 A2

] [
Px1

Px2

]
=
[

Cx1

Cx2

]
, (13.14)

[
A1 A1,2
A1,2 A2

] [
Py1

Py2

]
=
[

Cy1

Cy2

]
. (13.15)

Solving (13.14) and (13.15), one will achieve the following:

Px1 = A2Cx1 − A1,2Cx2

A1 A2 − A2
1,2

, Py1 = A2Cy1 − A1,2Cy2

A1 A2 − A2
1,2

, (13.16)

Px2 = A1Cx2 − A1,2Cx1

A1 A2 − A2
1,2

, Py2 = A1Cy2 − A1,2Cy1

A1 A2 − A2
1,2

. (13.17)

Now, all the four control points P0, P1, P2, P3 and t values are in hand. Using
these, one can fit the cubic Bézier to the segment. The demonstration of fit-
ted Bézier cubic curves (solid line) over boundary (dotted line) is shown in
Figure 13.9.
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FIGURE 13.9. Fitted cubic Bézier (solid line) over the boundary (dotted line).

13.5.2 Comparing the Boundary and Parametric Curve
We estimate the accuracy of our fit, for the segment under process, by computing
the squared distance1 between each of the points pi on boundary and its corres-
ponding points Q(ti ) on the parametric curve:

d2
i = |pi − Q(ti )| ,

= [pxi − Qx (ti )
]2 + [pyi − Qy(ti )

]2
.

(13.18)

Among all the computed distances computed by Equation (13.23), we find maxi-
mum squared distance:

d2
max = Max(d2

u , d2
u+1, . . . , d2

w).

If d2
max exceeds the predefined error tolerance limit d2

tolerance, then we apply repara-
meterization on the segment. The reparameterization process is explained in the
following section.

13.6 Reparameterization

Reparameterization means finding new and better values of the t parameter so that
we might not have to break a segment into two or more segments, and hence we
would need a lesser number of Bézier curves. Reparameterization is explained
as follows: Given a parametric curve Q(t) and a point p on the boundary, we
need to find a corresponding point on the parametric curve closest to p. In other
words, we need to find the parameter value t such that the distance from p to Q(t)

1 Computing the squared distance is computationally more efficient than simply computing
distance; otherwise their semantic is the same.
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Q(t)

p

Q ' (t)

Boundary

Parametric Curve

FIGURE 13.10. Distance between p and Q(t).

is minimum. This situation is illustrated in Figure 13.10. Note that distance p to
Q(t) is perpendicular to the tangent, that is, Q′(t) of the curve at Q(t) We can
write the reparameterization equation as follows:

[Q(t) − p] .Q′(t) = 0. (13.19)

This is a quintic equation (There is dot the product of [Q(t) − p] and Q′(t)) in t
and can be solved by Newton-Raphson’s method. [Q(t) − p] is a polynomial of
degree three and Q′(t) is of degree two. So Equation (13.24) is a polynomial of
degree five. Let

Q1(t) = Q(t) − p, (13.20)
Q2(t) = Q′(t). (13.21)

Now, we can write Equation (13.24) as follows:

Q1(t).Q2(t) = 0. (13.22)

Writing Equation (13.25) in Cartesian form as follows:

Q1(t) = [Qx (t) − px ] i + [Qy(t) − py
]

j. (13.23)

Let

Q1x (t) = Qx (t) − px , (13.24)
Q1y(t) = Qy(t) − py . (13.25)

Then we can write (13.23) as follows:

Q1(t) = Q1x (t)i + Q1y(t) j. (13.26)

Similarly, one can write Equation (13.26) in Cartesian form as follows:

Q2(t) = Q′
x (t)i + Q′

y(t) j, (13.27)
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where

Q′
x (t) = 3

[
(1 − t)2 (Px1 − Px0) + 2t (1 − t) (Px2 − Px1) + t2(Px3 − Px2)

]
,

(13.28)

Q′
y(t) = 3

[
(1 − t)2 (Py1 − Py0) + 2t (1 − t) (Py2 − Py1) + t2(Py3 − Py2)

]
.

(13.29)

We already have initial approximation of roots (i.e., t parameter). The new and
better value of parameter t can be determined by the Newton-Raphson method as
follows:

tnew ← told − f (t)
f ′(t)

. (13.30)

In the present scenario,

f (t) = Q1(t).Q2(t)

= [Q1x (t)i + Q1y(t) j
]
.
[

Q′
x (t)i + Q′

y(t) j
]
.

(13.31)

Dot product yields the following result:

f (t) = Q1x (t)Q′
x (t) + Q1y(t)Q′

y(t). (13.32)

Now Equation (13.35) can be solved by substituting the initial approximation of
parameter t , f (t) and f ′(t). This will give the new value of t . Using new values
of parameter t , we find new control points and apply the fitting process as usual.
We do reparameterization of the segments not fulfilling the threshold tolerance
limit. Since reparameterization is an expensive process, one can fix a maximum
limit on the number of times a segment can go for reparameterization.

Table 13.1 gives details of how the reparameterization step improves the perfor-
mance of the algorithm by reducing number of break points required in fitting a
cubic Bézier. The first column is without reparameterization and the last column
is with reparameterization.

TABLE 13.1. Effect of reparameterization on the fitting process.

Number of times Number of break points
reparameterization applied required

0 16
2 10
4 10
6 9
10 8
12 8
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13.7 Breaking Segment

If either the maximum limit of reparameterization exceeds or reparameterization
increases the square distance between the digitized curve and the parametric curve
rather than decreasing it (in some cases it is possible), then we can break the
segment into two segments at the point of maximum distance. Then the point
corresponding to the maximum distance is added to list of significant points.
The number of segments and number of significant points are increased by one.
This process is repeated for each segment until all the segments of all the pieces
meet the threshold tolerance limit. Figure 13.11 shows the fitted Bézier curve using
significant points over the boundary. Corner points are shown by “o” and break
points are shown by “♦”.

When all the segments meet the square distance threshold limit, then there is no
need to keep the specific t values. The use of specific t values has been made to
find the best possible intermediate control points and provide an initial estimate for
finding new t values in the Newton-Raphson method. After having all the control
points for all the segments, there is no more need of specific t values. One can
write a general expression for finding t values. By this general expression, one
can find t values on the fly (i.e., during fitting Bézier to a segment). If we fit a
cubic Bézier to a segment using n points then the expression of t can be written
as follows:

ti =
⎧
⎨

⎩

0 if i = 1,
ti−1 + 1/(n − 1) for 2 ≤ i ≤ n − 1,
1 if i = n.

(13.33)

Figure 13.12 shows the final fitted outline (parametric representation) of the
contour of Figure 13.1 (bitmap character). Figure 13.14 shows the parametric rep-
resentation of a Kanji (Japanese language) character in Figure 13.13.

FIGURE 13.11. Fitted cubic Bézier (solid line) over boundary (dotted line). Corner points
are shown by a circle “o”; break points are shown by a diamond “♦”.
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FIGURE 13.12. Final outline (parametric representation of bitmap character of
Figure 13.1).

FIGURE 13.13. A Kanji character.

FIGURE 13.14. Parametric representation of a Kanji character with significant points.

Figure 13.15 (a)-(f) shows various phases of the process from a bitmap image
(Figure 13.15(a) to the outline (Figure 13.15(f)) achieved for an English character



13.8. Alternate Method Using Hermite Cubic 281

(a) (b)

(c) (d)

(e) (f)

FIGURE 13.15. (a) Bitmap image. (b) Contour/boundary of digitized image. (c) Con-
tour/boundary with corner points. (d) Bézier outline fitted to corner points. (e) Bézier out-
line fitted to significant points “�.” (f ) Final outline.

“S.” Figure 13.15(b) is the contour/boundary of a digitized image, Figure 13.15(c)
is the contour/boundary with corner points. Figure 13.15(d) shows the Bézier
outline fitted to the corner points. Figure 13.15(e) is the Bézier outline fitted to
significant points.

13.8 Alternate Method Using Hermite Cubic

This section describes an alternative way of manipulating the cubic curve. This is
achieved by using an alternative form, namely, the Hermite cubic. Let Fi , Fi+1,
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i ∈ Z , be the two end characteristic points given at the distinct knots ti , ti+1, i ∈ Z
with interval spacing hi = ti+1 − ti > 0. Also let Di , Di+1, i ∈ Z denote the first
derivative values defined at the knots. Then the generalized form of the cubic is
defined by:

Pi |(ti ,ti+1)(t) = (1 − t)3 Fi + 3t (1 − t)2Vi + 3t2(1 − t) + t3 Fi+1, (13.34)

where
Vi = Fi + hi Di/3, Wi = Fi+1 − hi Di+1/3,

The interpolation conditions, ∀i are as follows:

Pi (ti ) = Fi ,
Pi (ti+1) = Fi+1,

P(1)
i (ti ) = Di ,

P(1)
i (ti+1) = Di+1.

⎫
⎪⎪⎬

⎪⎪⎭

Equation (13.34) can be rewritten as

Pi |(ti ,ti+1)(t) = R0,i (t)Fi + R1,i (t)Vi + R2,i (t) + R3,i (t)Fi+1,

where
R0,i (t) = (1 − t)3,

R1,i (t) = 3t (1 − t)2,

R2,i (t) = 3t2(1 − t),
R3,i (t) = t3.

⎫
⎪⎪⎬

⎪⎪⎭

One can see that the functions R j,i , j = 0, 1, 2, 3 are Bernstein-Bézier basis func-
tions, such that

3∑

j=0

R j,i (t) = 1.

One can also observe that the piecewise curve, thus obtained, results to a cubic
spline with C1 continuity.

13.8.1 Estimation of Tangent Vectors
We define a distance-based choice for tangent vectors Di ’s at Fi ’s as follows. For
open curves, the tangents are defined as follows:

D0 = 2 (F1 − F0) − (F2 − F0) /2,
Dn = 2 (Fn − Fn−1) − (Fn − Fn−2) /2,
Di = ai (Fi − Fi−1) + (1 − ai ) (Fi+1 − Fi ) , i = 1, . . . , n − 1.

⎫
⎬

⎭

For close curves, the tangents are described as follows:

F−1 = Fn−1, Fn+1 = F1,
Di = ai (Fi − Fi−1) + (1 − ai ) (Fi+1 − Fi ) , i = 0, . . . , n,

}

where
ai = |Fi+1 − Fi |

|Fi+1 − Fi | + |Fi − Fi−1| , i = 0, . . . , n.
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13.8.2 Optimal Design Curve
The case, when tangents are estimated as described in Section 13.8.1, is a C1 Her-
mite spline curve and will be treated as a default design curve here. This is a
simplest case to consider and requires less computation initially. We can assume
all hi are equal to 1, which yields:

Vi = Fi + Di/3 and Wi = Fi+1 − Di+1/3.

Suppose, for i = 0, 1, 2, . . ., n − 1, the data segments

{Pi, j = (xi, j , yi, j ), j = 1, 2, . . . , mi }
are given as the ordered sets of the universal set of the data points. Then the square
roots Si, j ’s of distances between Pi, j ’s and their corresponding parametric points
Pi (t j )’s on the curve are computed as:

Si =
√∣
∣Pi (ui, j ) − Pi, j

∣
∣, i = 0, 1, 2, . . . , n − 1,

where the parameterization over u’s is in accordance with the chord length para-
meterization.

For the best fitting of the curve to the given data, we have to find out the spline
curve so that the Si, j ’s are minimal in each segment. This can be done by breaking
the curve pieces at those points, where the square roots of distances are highest.
Thus, the curve fitted using this way will be a candidate of best fit.

For the practical demonstration of this alternate scheme, consider the bitmap
character in Figure 13.16(a). Its outline has been achieved in Figure 13.16(b).
Instead of SAM06, the corner detection algorithm applied is CS99 of Section 11.4.
Therefore, some visually incorrect corners can be seen in Figure 13.16(c) when
they are detected. Figure 13.16(d) is the Hermite cubic spline fitted to the corner
points thus detected. Figure 13.17 also presents a similar scenario when repeated
for another bitmap character.

A fitted Hermite spline curve may not satisfy the threshold tolerance limit as
can be seen in Figures 13.16 and 13.17. The curve is then subdivided at the point
of worst error —the point where the fitted spline is farthest from the digitized
curve. The new break point will be considered as a significant point, and the curve
is again fitted to these corner and break points obtained so far. This process of
inserting break points is repeated unless a threshold value is not violated.

Figures 13.18 and 13.19 demonstrate the scheme. In the matrices of Figure 13.18,
the first (from left to right) is for the bitmapped image of the font; the second
is for the outline of the font the third is showing the corner points; the fourth is
the Hermite spline curve fit; and the from the fifth to the ninth is the insertion of
break points against the threshold value three.

The matrix of Figure 13.19 follows in the same way against the threshold value
two. One can observe that lesser threshold value gives rise to more break points,
hence more accuracy costs in terms of break points.
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FIGURE 13.16. (a) A bitmap character. (b) Outline of the bitmap character. (c) CS99 corner
detection algorithm of Section 11.4 is applied. (d) Hermite cubic spline fitted to the corner
points.

Remark 13.1. One can devise the whole algorithm based on the Hermite spline
curve model to capture the outline of any planar bitmap image in such a way that
the tangents are calculated using the least square method. This way of manipulat-
ing the scheme will enhance the power of the algorithm.
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FIGURE 13.17. (a) A bitmap character. (b) Outline of the bitmap character. (c) CS99 cor-
ner detection algorithm of Section 11.4 is applied. (d) Hermite cubic spline fitted to the
corner points.

13.9 Transformations and Mapping

This chapter deals with producing various sizes and shapes of fonts using transfor-
mations and mapping. As we described earlier, outline fonts have many advantages
over bitmap fonts. By manipulation of a small number of points, various sizes
and shapes of the same character can be obtained very efficiently. Section 13.9.1
describes transformations while Section 13.9.2 is related to mapping.
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FIGURE 13.18. Implementation of the alternate scheme for threshold value 3.
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FIGURE 13.19. Implementation of the alternate scheme for threshold value 2.
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13.9.1 Transformations
A scaling transformation alters the size of an object. This operation can be carried
out for polygons by multiplying the coordinate values (x, y) of each vertex by
scaling factors sx , sy to produce the transformed coordinates

(
x ′, y′):

x ′ = x .sx , y′ = y.sy .

• Scaling factor sx scales objects in the x-direction.
• Scaling factor sy scales objects in the y-direction.

The scaling transformation equations can be rewritten in the matrix form as fol-
lows: [

x ′
y′
]

=
[

sx 0
0 sy

]
.

[
x
y

]
. (13.35)

Or
P ′ = S.P,

where S is the 2 × 2 scaling matrix.
If we do not want to scale along an axis, then its scaling factor (sx or sy) is set

to 1. Figure 13.20 shows the character “Allah” before scaling. Figure 13.21 shows
scaling along the x-axis (sx = 1/2, sy = 1). Figure 13.23 shows scaling along the
y-axis (sx = 1, sy = 1/2) for the image in Figure 13.22. Similarly, Figure 13.25
shows scaling along both x-axis and y-axis (sx = 1/2, sy = 1/2) for Figure 13.24.

It should be noted that to do scaling we multiply scaling factors (i.e., sx or sy)
with only control points and then fit the cubic Bézier to new set of points.
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FIGURE 13.20. Before scaling.
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FIGURE 13.21. Scaling along the x-axis sx = 1/2; sy = 1.
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FIGURE 13.22. Before scaling.

13.9.2 Mapping Parametric Surfaces
Mapping of a parametric surface can be described in terms of the mapping of a
two-parameter planar surface in uv parametric space into a three-dimensional xyz
object space. A surface in object space is represented by the functions that map
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FIGURE 13.23. Scaling along the y-axis sx = 1; sy = 1/2.
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FIGURE 13.24. Before scaling.

the parametric surface into the xyz object space, that is,

x = x(u, w),
y = y(u, w),
z = z(u, w).

⎫
⎬

⎭
(13.36)
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FIGURE 13.25. Scaling along x-axis and y-axis, sx = 1/2, sy = 1/2.

13.9.2.1 Two-Dimensional Surface Mapping

Let u and w arrays contain the control points of a segment, that is,

u = [ Px0 Px1 Px2 Px3
] ; v = [ Py0 Py1 Py2 Py3

]
.

We map this parametric space into object space by following functions:

x = u − w,
y = 2u + w,
z = 0.

⎫
⎬

⎭
(13.37)

Note that in Equation (13.37), z = constant = 0, the surface in object space is
lying in the z = 0 plane.

Figure 13.26 shows the parametric space of an Arabic word, namely, “Allah.”
After applying the two-dimensional mapping functions of Equation (13.37) to all
control points of all the segments of each piece of “Allah.” fit the cubic Bézier to
mapped significant points. Figures 13.27–13.32 show the plot of object space with
various elevation (El) and azimuth (Az) angles (the angle orientation with respect
to the z = 0 plane is called elevation and the angle with respect to the x = 0 plane
is called azimuth). The examples of two-dimensional surface mapping show that
holding a single parametric value constant (i.e., z), yields a curve on the surface
of object space. The curve is called isoparametric.
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FIGURE 13.26. Parametric space.

FIGURE 13.27. 2-D Surface mapping. Object space. Az = 30◦, El = 30◦.

FIGURE 13.28. 2-D Surface mapping. Object space. Az = 45◦, El = 45◦.

FIGURE 13.29. 2-D Surface mapping. Object space. Az = 160◦, El = 160◦.

FIGURE 13.30. 2-D surface mapping. Object space. Az = 210◦, El = 210◦.
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FIGURE 13.31. 2-D Surface mapping. Object space. Az = 330◦, El = 330◦.

FIGURE 13.32. 2-D Surface mapping. Object space (mirrored view). Az = −120◦, El =
−60◦.

FIGURE 13.33. 3-D Surface mapping. Object space. Az = 0◦, El = 55◦.

FIGURE 13.34. 3-D Surface mapping. Object space. Az = −40◦, El = 45◦.
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13.9.2.2 Three-Dimensional Surface Mapping

Similarly, as in the previous section, one can apply three-dimensional mapping to
map parametric space into object space. In this case, mapping functions may be
the following:

x = u,
y = w,

z = (u − w)2 .

⎫
⎬

⎭
(13.38)

This selection of mapping functions is based on following criteria:

• The legibility of the character should be preserved.
• A continuous segment must not map to a discontinuous segment.

13.10 Summary

We have presented an efficient algorithm for approximation of the boundary of
digital character images. The algorithm is particularly suitable for languages that
are highly curvilinear in nature, such as Arabic, Japanese, Urdu, and so on. In
addition to the detection of corner points, a strategy to detect a set of break points
has also also been explained to optimize the outline. Parametric cubic Bézier
curves are used for fitting. Filtering noise and reparameterization steps are added
to improve the performance of the algorithm. The proposed approach eliminates
the human interaction in obtaining the outline of the original character [18].

13.11 Exercises

1. Using a Gaussian filter, write a program to filter the outlines of images.
2. Repeat the filtering process in Exercise 1 a number of times and explain the

difference you observe.
3. Repeat the filtering process in Exercise 1 a number of times and explain the

difference you observe when

a. the corner points are included,
b. the corner points are excluded.

4. Write a program to detect corner points using the SAM06 corner detection
algorithm and then filter the noise in such a way that the corner points remain
included. Do you think the claim in the book is justified, that, due to this strat-
egy, corner points are detected more accurately and the overall shape of char-
acter is more intact?

5. Write a program using chord length parameterization to plot a Bézier cubic
curve with given four input control points.

6. Write a program using unit length parameterization to plot a Bézier cubic curve
with given four input control points.
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7. How different would the two Bézier cubic curves, in Exercises 5 and 6, look
when fitted to the following control points:

a. P0 = (0, 0) , P1 = (5, 10) , P2 = (15, 15) , P3 = (25, 5) ,
b. P0 = (0, 0) , P1 = (5, 10) , P2 = (−10, 15) , P3 = (5, 5) ,
c. P0 = (0, 0) , P1 = (5, 10) , P2 = (15,−15) , P3 = (25, 5) ,
d. P0 = (0, 0) , P1 = (5, 10) , P2 = (15, 15) , P3 = (0, 0) .

8. Find the intermediate control points for the following data (read from left to
right in order) when a Bézier cubic is fitted as in Section 13.4.1:

a. (0, 0), (5, 10), (15, 15), (25, 5), (30, 20), (30, 30), (35, 40),
b. (0, 0), (1, 10), (2, 11), (3, 12), (4, 13), (5, 15), (6, 17), (7, 17),

9. Write a program using chord length parameterization to plot a Hermite cubic
curve with given input data points as given in Exercises 7 and 8.

10. Write a program using unit length parameterization to plot a Hermite cubic
curve with given input data points as in Exercises 7 and 8.

11. Write a program to implement the whole algorithm based on the Bézier curve
model to capture the outline of any planar bitmap image.

12. How different would the two Hermite cubic curves in Exercises 10 and 11 look
when fitted?

13. Write a program to implement the whole algorithm based on the Hermite
spline curve model to capture the outline of any planar bitmap image.

14. Devise the whole algorithm based on the Hermite spline curve model to cap-
ture the outline of any planar bitmap image in such a way that the tangents are
calculated using the least square method.
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14
Computer-Aided Reverse Engineering
Using Evolutionary Heuristics
on NURBS

Abstract. This chapter is related to the issue of computer-aided reverse engineering.
Although the proposed techniques have been presented for image-based planar objects, it
is extendable to the objects in 3D with some modifications. Two nondeterministic evolution-
ary approaches have been presented. Nonuniform rational B-splines (NURBS) have been
utilized as an underlying approximation curve scheme. Simulated annealing and simulated
evolution heuristics are used as evolutionary methodologies. The optimized NURBS models
have been fitted over the contour data of the planar shapes for the ultimate and automatic
output. The output results are visually pleasing with respect to the threshold provided by
the user.

14.1 Introduction

Computer-aided reverse engineering (CARE) is an important area of study in
the modern age of computers. Many solutions in modern industry are provided
for design and manufacturing [12–16, 19]. In modern design, scanned digital
data leads to using contour styling [9, 10] which helps to guide visual accep-
tance after adopting some curve or surface approximation scheme [3, 5, 7]. Var-
ious objects including manufactured parts or human body parts are designed
and redesigned with complex free-form geometry. This trend can be found
in recent years in various applications such as vehicle body design. The wide
acceptance of free-form curves and surfaces for component design can also be
attributed to advances in curve and surface modelling and their implementations
in CAD/CAM/CAE/CARE systems.

Although the techniques of using curve and surface models for representing
complex geometries have become quite mature and stable, people still debate
using an appropriate model for a specific application. From the perspective of
reverse engineering, nonuniform rational B-spline (NURBS) curves and surfaces
can approximate complex geometry more accurately and effectively. However,
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curve or surface approximation using NURBS has not been found in many practi-
cal applications in recent years. One of the reasons is that methods for computing
the best rational approximation are in general nonlinear [17]. With large amounts
of digitized data and heavy computations in the case of multivariable nonlinear
equations, the amount of computation time is too expensive and is almost not
affordable in most of the CARE practices. This is one of the reasons that most
of the designers frequently use a B-spline curve or surface approximation. But
it is a fact that the accuracy requirement in curve and surface approximation is
continuously increasing due to very complex models being faced in the industry.

Although increasing the number of control points of B-splines can, in gen-
eral, improve the curve or surface-fitting accuracy, it is basically against the data
reduction principle and will increase the burden of the database [15]. Thus, under
the circumstances when the factors of accuracy and model size are important,
the NURBS curve and surface approximation can prove to be a useful solution.
However, efficient fitting algorithms are required to be developed and used for
NURBS applications.

This study is related to the NURBS curve and surface approximation using
efficient fitting algorithms. In shape design problems, the main objective is to
achieve an optimized curve or surface with the least possible computation cost.
For complicated shapes with large measurement data, the problem depends on
the selection of appropriate parameters in the description of the curve or surface
model. Algorithms based on heuristic techniques such as genetic algorithms (GA),
simulated annealing (SimE), simulated evolution (SimE), and so on, can provide
us with an approach to finding optimal parameters with reasonable cost. Since
the data in such problems cannot be approximated with a single polynomial, the
application of splines, Bézier curves, and so on, are utilized. NURBS [4], which
provide more local control on the shape of the curve, give a better approximation
of the underlying data in shape design problems.

When using NURBS for curve and surface approximation of digitized data, it
can be shown [18] that in the context of optimization the objective function to
be set up is the sum of the squared errors. Since the NURBS consist of multipa-
rameters, knots, control points, and weights, the rational format of the objective
function makes the fitting task a multivariable nonlinear optimization problem.
Although there exist various algorithms for nonlinear optimization problems, they
are typically computationally expensive and time-consuming. Furthermore, when
faced with a problem that involves many variables, the initial values become very
difficult to predict. This chapter concentrates only on weight parameters to be
optimized so that an optimal curve or surface model can be achieved efficiently.

Since SimE and SimA are heuristics, the problem of initial values will also
be resolved by assuming their random values. Thus, the optimization problem in
this chapter becomes a univariate optimization problem, which is easy to man-
age. This problem was solved in [12,13,19] and is different from other techniques
in [9, 10, 12, 14]. In [9], knots corresponding to the control points have been opti-
mized using a genetic algorithm. An approach based on a Tabu search has been
applied in [14]. An algorithm proposed in [12] discusses optimization of knots
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and weights using simulated annealing. In [10], a novel approach was proposed
for optimization of NURBS control points using SimE. The main objective of
this chapter is to describe curve or surface-fitting algorithms based on SimE using
NURBS. Here, the shape parameters in the description of the NURBS have been
selected to be computed such that the computed curve or surface provides a best fit
to the original data raised from the geometric models after the scanning process.

The chapter is divided into various sections. The following section deals with
preprocessing issues such as image contour extraction and detection of cor-
ner points. Section 14.3 gives a brief description of NURBS whereas the SimE
algorithm is discussed in Section 14.4. The approach, with details of the evolu-
tionary optimization curve technique, SimE, is described and demonstrated in
Section 14.5. The two approaches are demonstrated for surfaces in Section 14.6.
The chapter is summarized in Section 14.7.

14.2 Preprocessing

This section is devoted to preprocessing issues such as image contour extraction
and detection of corner points.

14.2.1 Image Contour Extraction
A digitized image is obtained from an electronic device or by scanning. For the
planar objects, the quality of a digitized scanned image depends on various factors
such as the image on paper, scanner type and the attributes set during scanning.
The contour of the digitized image is extracted using the boundary detection
algorithms. There are numerous algorithms for detecting the boundary. In this
study, the algorithm used is one proposed by Quddus [8]. The input to this algo-
rithm is a bitmap file and the output is the number of boundary points and their
values. The algorithm returns a number of boundary points and their values. As
a demonstration, one can see the output in Figures 14.1(b) for the BMP image in
Figures 14.1(a). It should be noted that, to acquire 3D data from 3D models, some
sophisticated 3D scanners can be used with an appropriate technique.

14.2.2 Detection of Corner Points
Detection of corner points is the next step after finding out contours. The corner
points are those points that partition the outline into various segments. A num-
ber of approaches have been proposed by researchers; the reader is referred to
Chapter 11 for details. In this chapter, two different corner detectors, namely CS99
(see Section 11.4) and SAM06 (see Section 11.5), have been used. The reverse
engineering technique based on the SimE approach in Section 4.4 uses CS99,
whereas SAM06 is used for the technique based on SimA in Section 14.5.

Detection of corner points using CS99 with different settings of parameters is
made for Figure 14.1(b). Figure 14.2(a) demonstrates the corner points detected
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(a) (b)

FIGURE 14.1. Extracting a digital outline contour of the model: (a) bitmap image, (b) the
digital contours of the model in (a).

(a) (b)

FIGURE 14.2. Detection of corner points using CS99 with different settings of parameters:
(a) detecting corner points for Figure 14.1(b) against choice I of parameters in Table 14.1;
(b) detecting corner points for Figure 14.1(b) against choice II of parameters in Table 14.1.

TABLE 14.1. Different settings of parameters for the detection of corner points.

Image Name Choice I Choice II

dmin dmax K αmax dmin dmax K αmax

Fork.bmp 4 6 4 150 4 6 4 155

against choice I in Table 14.1. Choice II, in Table 14.1, produces the corner points
as in Figure 14.2 (b). One can observe that choice II has produced more corner
points as compared to choice I.

Table 14.2 provides a detailed study of the digital contours and their corner
points. One can see that the plane figure consists of three contours having 1250(=
1106 + 61 + 83) contour points. It has 13 and 18 corner points corresponding to
choices I and II, respectively. Similarly, fork figure consists of one contour having
693 contour points. It has 8 and 10 corner points corresponding to choices I and
II, respectively.

Detection of corner points using SAM06 is made for Figure 14.3(a). Clearly,
the detected points are more precise and more appealing to the eye.
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TABLE 14.2. Different settings of parameters for the detection of corner points.

Image # of
Contours

# of Contour
Points

# of Corner
Points with
Choice I

# of Corner
Points with
Choice II

Fork.bmp 1 [693] 10 12

FIGURE 14.3. Detection of corner points using SAM06.

14.3 NURBS

A unified mathematical formulation of NURBS provides free-form curves and
surfaces. NURBS contains a large number of control variables; because of those
variables it is flexible and powerful. NURBS is a rational combination of a set
piecewise rational polynomial of basis functions of the form:

S(t) =

n∑

i=1
wi Pi Ni,k(t)

n∑

i=1
wi Ni,k(t)

, (14.1)

where Pi are the control points and wi represent the associated weights. The value
t is the parametric variable and Ni,k(t) is the B-spline basis function [6]. Assuming
a basis function of order k (degree k − 1), a NURBS curve has n + k knots and the
number of control points equals to weights. The knot set {ti } is a nondecreasing
sequence: t1 ≤ t2 ≤ . . . ≤ tn+k−1 ≤ tn+k . The parametric domain for each piece
of curve is ti ≤ t ≤ ti+1. NURBS include weights as extra degrees of freedom,
which are used for geometric design [5–7]. NURBS are attracted toward a control
point if the corresponding weight is increased and it is pushed away from a control
point if the weight is decreased. If a weight is zero, the corresponding rational basis
function is also zero and its control points do not affect the NURBS shape.

NURBS generalize polynomial-based parametric representations for shape
modeling. Analogous to B-splines, the rational basis functions of NURBS sum



302 14 Computer-Aided Reverse Engineering

to unity; they are infinitely smooth in the interior of a knot interval provided that
the denominator is not zero, and at a knot they are at least Ck−1−r continuous
with knot multiplicity r . They inherit many properties from B-splines, such as
the strong convex hull property, variation diminishing property, local support,
and invariance under affine geometric transformations. Moreover, NURBS have
additional properties. NURBS offer a unified mathematical framework for both
implicit and parametric polynomial forms. In principle, they can represent analytic
functions such as conics and quadrics precisely, as well as free-form shapes.

NURBS surfaces are the extended version of the curve case, as defined here:

S(u, v) =

n∑

i=1

m∑

j=1
Pi, jwi, j Ni,k(u)N j,k(v)

n∑

i=1

m∑

j=1
wi, j Ni,k(u)N j,k(v)

, (14.2)

where wi, j and Pi, j are weights and control points, respectively. The knot sets{
u j
}

and
{
v j
}

is a nondecreasing sequence as u1 ≤ u2 ≤ . . . ≤ um+k−1 ≤ um+k
and v1 ≤ v2 ≤ . . . ≤ vm+k−1 ≤ vm+k , respectively. The parametric domain for
each piece of the surface is

[
ui , ui+1

]× [v j , v j+1
]
.

14.3.1 Data Fitting Using NURBS Curves
Given a set of data points F in the plane, we compute a planar NURBS curve
to approximate the points. The given data is assumed to represent the shape of a
known curve, which can be open or closed but not be self-intersecting. This curve
is called the target curve or the target shape. For generalization, let us assume that
ε is the measurement error between the fitted curve and the target curve. So, we
can write

F(t) = f (t) + ε(t) (14.3)

where t represents the parameter. In the above equation, f (t) is the underlying
function that is to be approximated using NURBS, and ε(t) represents the mea-
surement error at the particular value of t at that data point.

Let ξi (i = 1, 2 . . . , n + m) be knots for data fitting, where n is the number of
control points and m is the order (degree + 1) of NURBS. In this study, we have
used centripetal parameterization for the parameter t . At the end of the interval
[a, b], we set,

a = ξ1−m = . . . = ξ0,
b = ξn+1 = . . . = ξn+m

}
(14.4)

There are three commonly used methods to parameterize the value of t . These
methods are: (i) equally spaced parameterization, (ii) chord length parameteriza-
tion and (iii) centripetal parameterization. In this chapter, we use centripetal para-
meterization to estimate the parametric value t associated with each data point Pi .
After having the t value associated with each point, we fit NURBS curve to the set
of data points of each segment:
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14.3.2 Generation of Control Points for Curves
We optimize the NURBS curve for the given digital data, and the proposed method
is based on optimizing with respect to weights of the NURBS curve using SimE.
But, for simplicity and economical reasons, the computation of control points to
be used in NURBS will be computed through nonuniform B-spline (NUBS) which
is the nonrational counterpart of the NURBS. Determining control points that gen-
erate a NUBS curve for a set of known digitized data points is as follows:

The equation for the NUBS curve is:

D(t) =
n+1∑

i=1

Pi Ni,k(t) (14.5)

If the data points lie on the curve. then it must satisfy Equation (14.5). Rewriting
Equation (14.5) for each of j data points yields the following:

D(t1) = N1,k(t1)P1 + N2,k(t1)P2 + . . . + Nn+1,k(t1)Pn+1
D(t2) = N1,k(t2)P1 + N2,k(t2)P2 + . . . + Nn+1,k(t2)Pn+1
.
.
.
D(t j ) = N1,k(t j )P1 + N2,k(t j )P2 + . . . + Nn+1,k(t j )Pn+1

(14.6)

where 2 ≤ k ≤ n + 1 ≤ j (k is order of the basis and n is the number of control
points). This system of equations is written more compactly as

[D] = [N ][P] (14.7)

where

[D]T = [D (t1) D (t2) . . . D
(
t j
)]

,

[P]T = [P1 P2 . . . Pn+1],

[N ] =

⎡

⎢
⎢
⎣

N1,k(t1) . . . . . . Nn+1,k(t1)
· . . . . . .
· . . . . . .

N1,k(t j ) . . . . . . Nn+1,k(t j )

⎤

⎥⎥
⎦ .

The value of the parameter t for each data point is measured using centripetal
parameterization as discussed earlier. If 2 ≤ k ≤ n + 1 = j then the matrix N is a
squared matrix and the control points can be obtained directly by matrix inversion
as follows:

[P] = [N ]−1[D] 2 ≤ k ≤ n + 1 = j.

In this case, the resulting curve passes through each data point and hence a curve
fit is obtained. A fairer or smoother curve is obtained by specifying fewer control
points than data points, that is, 2 ≤ k ≤ n + 1 < j . Here in this case, matrix N
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is no longer a squared matrix. Recalling that a matrix times its transpose is always
square, the control polygon for a curve that fairs or smoothens the data is given by:

[D] = [N ][P],
or

[N ]T [D] = [N ]T [N ][P],
or

[P] =
[
[N ]T [N ]

]−1 [N ]T [D]. (14.8)

Solving Equation (14.8) will give the control point matrix for the curves.

14.3.3 Generation of Control Points for Surfaces
A similar treatment, as mentioned in the previous subsection, can be extended for
the generation of control points for surfaces. Because they are out of the scope of
this book, the details are omitted here.

14.4 Approach Using SimE

14.4.1 Outline of SimE
SimE is a powerful general iterative heuristic for solving combinatorial optimiza-
tion problems [11, 13]. The algorithm consists of three basic steps: evaluation,
selection and allocation. These three steps are executed sequentially for a prefixed
number of iterations or until a desired improvement in goodness is observed. The
SimE algorithm starts with an initial assignment, and then seeks to reach better
assignments from one generation to the next. SimE assumes that there exists a
population P of a set M of n elements. A cost function is used to associate with
each assignment of element m a cost Cm . The cost Cm is used to compute the
goodness gm of element m for each m ∈ M .

The selection step partitions the elements into two disjoint sets Ps and Pr based
on their goodness. The elements with bad goodness are selected in the set Ps and
the rest of the elements are in the set Pr . The nondeterministic selection operator
takes as input the goodness of each element and a parameter B, a selection bias.
Hence, the element with the high goodness still has a nonzero probability of being
assigned to the selected set Ps . The value of the bias is application-dependent.

The allocation step takes Ps and Pr and generates a new solution P’, which con-
tains all the members of the previous population P . The members of Ps are then
worked on so that their goodness can be enhanced in the subsequent iterations.
The choice of a suitable allocation function is problem-dependent [13].

14.4.2 Problem Mapping SimE
The approach to the curve problem is described here in detail. However, the sur-
face problem is not explained here, since it is beyond the scope of this book. This
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section describes the SimE formulation of the current problem in detail. In curve-
fitting problems, the solution space consists of the number of data points on the
image boundary.

14.4.2.1 Initialization

Initialization is the first step in SimE. It consists of selecting a starting solution
for the problem under consideration. This solution can be generated randomly or
the output of any constructive heuristic. In our case from the boundary points, the
initial solution is created using the corner detection algorithm.

The corner detection algorithm divides the given image into segments. The cor-
ner points are the only end points of the segment (S). For example if there is n
number of corner points, we have n − 1 segments. For each segment we need to
calculate the parameters t , control points, knot vector and the weight of NURBS.
The initial solution of the weight vector is randomly selected from the range [0, 1].
The number of elements in the weight vector corresponds to the number of control
points. The values of the parameters t for each segment are calculated using the
centripetal method. The number of control points of the segment are always equals
to the order of the NURBS curve.

In our proposed approach we have included the two corner points of the segment
as the control points, and the remaining control points are determined using the
least square method. The weight corresponding to each control point of a segment
is taken randomly between 0 and 1. After calculating the required parameters for
each segment, the curve is fitted using NURBS. This fitted curve for each segment
is considered to be the initial solution for SimE. The other important parameters
that are initialized in this step are a stopping condition and selection bias (B).
We have taken the selection bias (B) in the range of [−1, 1] and fixed number
of iterations.

14.4.2.2 Evaluation

In this step, each individual segment of the curve is evaluated on the basis of
goodness. The goodness gi of each segment Si is determined by:

gi = ε

Qi + ε
, ε ≥ 1. (14.9)

This criterion is different than that discussed in [10]. In this research, we have
taken ε = (li + k) where li is the length of the knot vector for each segment, k is
the order of the curve and Qi is sum square error between the target and the fitted
curve. Qi can be defined as:

Qi =
N∑

1

{(S(ti ) − Fi )
2}. (14.10)

Here S(ti ) is the approximated curve and {Fi } is the target curve data. N is the
total number of data points in each segment. The goodness gi represents a measure
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of how near each segment is the optimum curve fit. As is obvious from Equation
(14.9), the goodness of an element is between 0 and 1. The value of goodness gi
nearer to 1 means that the segment i is nearer to its optimum curve fitting.

14.4.2.3 Selection

The goodness gi is used to probabilistically select segments (Si ) in the selection
step. On the basis of the goodness gi , the selection function partitions the segments
into two sets, Pr and Ps , probabilistically. The selection function is defined as
follows:

If (Random [0, 1] ≤ 1 − gi + B) then
Ps = Ps ∪ {Si }

Else
Pr = Pr ∪ {Si }

Set Ps contain the segments with low or bad goodness and the set Pr contains
the rest of the segments.

14.4.2.4 Allocation and Weight Optimization for Curves

The purpose of the allocation is to perturb the current solution in such a way that
it reaches the optimum solution. In our case, the optimum solution achieves a
smooth curve with least error. After fitting the initial curve, further refinement of
curve have to be done to achieve better fitting accuracy. For this purpose, different
NURBS parameters have to be changed.

The allocation step for optimizing weights is to perturb the current solution of
weights by assigning the selected segments in Ps to new values. In our case we
perturb the weights in neighborhood of [wcur

i , wcur
i + 0.5], where wcur

i is the cur-
rent weight corresponding to the control point i . For each segment, 10 to 15 trail
allocations for the weight vector are made, and for each trail error between the
fitted curve and target is calculated. After performing all trails of the perturbing
weight vector, the trail with the least error is made permanent and the correspond-
ing segment is removed from Ps . This process is repeated until all the segments
in Ps are perturbed. The flowchart for weight optimization process using SimE is
given in Figure 14.4.

14.4.3 Algorithm Outline for Curves
We can summarize all the phases from digitization to optimization discussed in the
previous sections. The algorithm of the proposed scheme is contained on various
steps as follows:

Begin
Input the digitized image.

Step 1: Find the image contour.
Step 2: Find the corner points
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START

END

Fit the curve using
Optimized weights

using NURBS

Get Digitized Image

Optimize weights using
Simulated Evolution

Calculate control points using
least squares technique.Calculate Knot Vector

Calculate the parametric values
of NURBS, corresponding to

contour points

Extract the Contour and cornor
points

(for curves only)

FIGURE 14.4. Flowchart for the weight optimization of curves using SimE.

Step 3: For each segment Si
(a) Find control points from data points using the method of least

square.
(b) Find the knot vector.
(c) Find the weight vector corresponding to the control points.
(d) Fit the curve with NURBS

End for
Step 4: Initialize population (Weights generated at step 4(c)) Pi,

Bias value and number of iterations for SimE
Step 5: for j = 1 to number of iterations (say 100)
(a) Evaluation

For each segment Si
Find goodness (gi )

End for
(b) Selection

For each segment Si
If (Random [0, 1] ≤ 1 − gi + B) then

Ps = Ps ∪ {Si }
Else
Pr = Pr ∪ {Si }

End for
(c) Allocation

For each segment Si in Ps .
Perturb the weight vector for 10–15 trails and choose the

best one.
End for

P = Pr ∪ Ps
end for j
Step 6: Return the final fitted curve with NURBS

End

Figure 14.5 depicts the flowchart for the optimization of the weight vector using
SimE for NURBS. The data for different digitized images (objects) were used
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START

Get Digitized Image

Detect Corner points (CP)

Divide image into segments
based on CP

Conserve CP as the Control
points for each segment

Calculate knot vector for
each segment

Calculate other parameters
for NURBS for each segment

Fit the NURBS curve for
each segment

Calculate goodness of each
segment

Random <=1-
goodness+B

yesNo

selection

T

F Return F

Mutate weight vectors of
selected segment

Length (P5)=0

Pr = Pr∪{ j}

P5=P5 ∪{ j}

Yes

No

Return T

While i<=MaxIterations

i=i+i

END

Fit the curve using
NURBS

Store the values of
weight vector of

segments

Simulated Evolution Process by
calling 'SE' function at Bias 'B'

and no. of iterations, to get best
weight vector for each segment

SE

Extract the Contour
Input Data &

Control
Parameters

+

FIGURE 14.5. Flowchart for weight optimization using SimE for NURBS.
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to test the weight optimization of the NURBS curve using the SimE technique.
Digitized image data is segmented using corner points. Each segment has its own
weight vector for fitting NURBS. The length of the weight vector equals the num-
ber of control points generated using the least square technique for that segment.
Experience has shown that using the fewest number of control points yields the
fairest curve. Keeping this in mind for each segment, the number of control points
taken is equal to the order of the curve. Table 14.3 shows the various parameters
used and generated in the optimization of weight using SimE.

14.4.4 Demonstration
Figure 14.5 depicts the flowchart for the optimization of weight vector using SimE
for NURBS. The data for different digitized images (objects) were used to test
the weight optimization of NURBS curve using SimE technique. Digitized image
data is segmented using corner points. Each segment has its own weight vector
for fitting NURBS. The length of the weight vector equals the number of control
points generated using the least square technique for that segment. Experience
has shown that using the fewest number of control points yields the fairest curve.
Keeping this in mind for each segment, the number of control points taken is equal
to the order of the curve. Table 14.3 shows various parameters used and generated
in the optimization of weight using SimE.

Figure 14.6 demonstrates the optimization results for the object “fork” in
Figure 14.1(b) when a smaller set of corner points is achieved; see Figure 14.2(a),
for the setting of parameter choice I in Table 14.1. Figure 14.6(a) represents the
default curve. Figures 14.6(b) and 14.6(c) demonstrate the intermediate results for
SimE curve fitting obtained for the object “fork” at iterations 1 and 40. respec-
tively. The final NURBS fitted image for object fork, after 60 iterations, is shown
in Figure 14.6(d). The algorithm converged at the 60th iteration for the object
“fork.” The sum square error (SSE) between the boundary of the image object
“fork” and the NURBS fitted curve with respect to the number of iterations is as
shown in Figure 14.7. Average goodness of the fitted curve is shown in Figure 14.8.
The number of segments selected for each iteration is plotted in Figure 14.9. The
results obtained using the proposed algorithm are found to be better compared to
the results obtained using the genetic algorithm discussed in [9].

Figure 14.10 demonstrates the optimization results for the object “fork” in
Figure 14.1(b) when a bigger set of corner points was achieved, see Figure 14.2(b),
for the setting of parameter choice II in Table 14.1. Figure 14.10(a) represents the
default curve. Figures 14.10(b) and 14.10(c) demonstrate the intermediate results

TABLE 14.3. Parameters used for weight optimization.

Image Order of NURBS No. of control points Bias value (B)
(for each segment)

Fork 4 4 −0.5
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FIGURE 14.6. Curve fitting on the set of corner points extracted (as shown in Figures
14.3(a) and 14.33(c)) : (a) using default values of shape parameters as 1; (b) after first
iteration of SimE; (c) after the fifth iteration of SimE; (d) after final iteration of SimE.

FIGURE 14.7. Sum square error (SSE) plotted against number of iterations for the object
“fork.”
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FIGURE 14.8. Average goodness plotted against number of iterations.

FIGURE 14.9. Number of segments selected for SimE plotted against number of iterations
for object “fork.”
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FIGURE 14.10. Curve fitting on the set of corner points extracted (as shown in
Figures 14.2(b) and 14.2(d)): (a) using default values of shape parameters as 1; (b) after
first iteration of SimE; (c) after fifth iteration of SimE; (d) after final iteration of SimE.

for SimE curve fitting obtained for the object “fork” at iterations 1 and 10, respec-
tively. The final NURBS fitted image for the object “fork,” after 20 iterations,
is shown in Figure 14.10(d). The algorithm converged at the twentieth iteration
for the object “fork.” Thus, one can see that having more corner points, although
it costs a little more in terms of memory and hence computation, saves a lot of
computation time in terms of running expensive iterative process of SimE. In this
case, the results obtained using the proposed algorithm are found to be even much
better compared to the results obtained using the genetic algorithm discussed
in [9].

14.5 Approach Using SimA

This section also represents the simulated annealing optimization heuristic to opti-
mize weights of the NURBS curve for reverse engineering. The SimA algorithm
was first proposed in [7] as a means of finding the equilibrium configuration of a
collection of atoms at a given temperature. Kirkpatrick et al. [4] were the first to
use the connection between this algorithm and mathematical minimization as the
basis of an optimization technique for combinatorial (as well as other) problems.
It is derived from the analogy of the physical annealing process of metals.
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14.5.1 Outline of SimE
SimA’s major advantage over other methods is its ability to avoid being trapped
in local minima. The algorithm employs a random search, which not only accepts
changes that decrease the objective function E , but also some changes that would
increase it. The latter are accepted with a probability

Prob(accept) = exp(−�E/T ),

where �E is the increase in E and T is a control parameter, which by analogy
with the original application is known as the system “temperature,” irrespective of
the objective function involved.

SimA can be briefly described as follows: Given a function to optimize, and
some initial values for the variables (initial solution), SimA starts initially with a
high temperature and a solution (or state). Based on the actual solution, it selects
a new random tentative solution in the neighborhood of the actual solution. The
tentative solution is generated by a small perturbation of the actual solution. If
the tentative solution has lower objective function value, then it is accepted as the
new solution. On the other hand, if the objective function value is high, it might
still be accepted based on certain probability depending on the change in the value
of the objective function and the temperature. This process is repeated slowly by
decreasing the temperature until the optimized solution is reached. More details
of SimA are given in Section 14.5.1 and can also be found in [19].

In order to implement simulated annealing, we need to formulate a suitable cost
function for the problem being solved. In addition, as in the case of local search
techniques, we assume the existence of a neighborhood structure, and need the
neighbor function to generate new states (neighborhood states) from current states.
And, finally, we need a cooling schedule that describes the temperature parameter
T and gives rules for lowering it.

14.5.2 Problem Mapping
This section focuses on the organization of all the phases toward the achievement
of outline capture of planar images. In particular, a detailed study is made to dis-
cuss how the weights and knots, in the description of NURBS, can be optimized
in an independent manner. We start with the digitized image obtained from an
electronic device or scanner. The contour of the digitized image is extracted using
the boundary detection algorithm [8], discussed in Section 14.3. This algorithm
returns a number of segments and, for each segment, a number of boundary points
(data points) and their values.

14.5.2.1 Weight Optimization Using SimA

There are three commonly used methods to parameterize knots (the equally spaced
method, the chord length method and the centripetal method), which can be uti-
lized to identify knots. In this research, we use the chord length method. Assume
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that the parameter value t lies between zero and one. For the set of the available
data points, the maximum value of the knot vector, say at the � th data point, is
denoted by tmax.

t1 = 0,

t�
tmax

=

�∑

s=2
|Ds − Ds−1|

j∑

s=2
|Ds − Ds−1|

, � ≥ 2.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(14.11)

The control points are calculated using the least squares technique as the next
step. A fairer or smoother curve is obtained by specifying fewer control polygon
points than data points, that is, 2 ≤ k ≤ n < j . Recalling that a matrix times its
transpose is always square, the control polygon for a curve that fairs or smoothens
the data is given by

[D] = [B] [P] ,

which implies
[B]T [D] = [B]T [B] [P] .

Hence
[P] =

[
[B]T [B]

]−1
[B]T [D] ,

where
[D]T = [D1 (t1) D2 (t2) . . . D j

(
t j
)]

,

are data points, and
[P]T = [P1 P2 . . . Pn+1

]
,

are the control points and [B] is the set of B-spline basis functions.
The evaluation of the control points, by least squares approximation, can be

viewed as an initial estimation of the fitted curve. Further refinement can be
obtained by optimizing the different NURBS parameters, such as the knot values
and the weights in order to achieve better fitting accuracy. The error function (or
cost function) between the measured points and the fitted curve is generally given
by the following equation:

E =
( s∑

i=0

|Qi − S(α1, . . . , αn)|r /s

)1/r

, (14.12)

where Q represents the set of measured points of the target curve. S (α1. . .αn) is
the geometric model of the fitted curve, where (α1, . . . , αn) are the parameters of
the fitted curve; s is the number of measured points and r is an exponent rang-
ing from 1 to infinity. The fitting task can then be viewed as the optimization of
the curve parameters (α1, . . . , αn) to minimize the error (or cost) E . In case the
exponent r is equal to 2, the above equation reduces to the least squares function.
It is to be noted that the weights present a large number of independent variables
(equaling the number of control points) to the optimization problem, which may
lead to a large search space. Therefore, global optimization techniques are needed
for optimizing such problems.
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We describe, in this section, the use of SimE optimization heuristic to optimize
weights of the NURBS curve. The initial solution S0 of weight vector is randomly
selected from the range [0, 0.5]. The number of elements in the weight vector
corresponds to the number of control points. The cooling schedule used here is
presented similar to the one in [4]. It is based on the idea that the initial tempera-
ture T0 must be large to virtually accept all transitions and that the changes in the
temperature at each invocation of the Metropolis loop are small. The scheme pro-
vides guidelines to the choice of T0, the rate of decrements of T , the termination
criterion and the length of the Markov chain (M).

14.5.2.2 Initial Temperature T0

The initial temperature must be chosen so that almost all transitions are accepted
initially. That is, the initial acceptance ratio χ(T0) must be close to unity where

χ (T0) = Number of moves accepted at T0

Total number of moves attempted at T0
.

To determine T0, we start off with a small value of initial temperature given by
T ′

0, in the Metropolis function. Then χ(T ′
0) is computed. If χ(T ′

0) is not close to
unity, then T ′

0 is increased by multiplying it by a constant factor larger than one.
The above procedure is repeated until the value of χ(T ′

0) approaches unity. The
value of T ′

0 is then the required value of T0.

14.5.2.3 Decrement of T

A decrement function is used to reduce the temperature in a geometric progression,
and is given by

Tk+1 = αTk, k = 0, 1, . . . ,

where α is a positive constant less than one, since successive temperatures are
decreasing. Further, since small changes are desired, the value of α is chosen very
close to unity, typically 0.8 ≤ α ≤ 0.99.

14.5.2.4 Length of Markov Chain M

The length of Markov chain M is equivalent to the number of times the Metropolis
loop is executed at a given temperature. If the optimization process begins with a
high value of T0, the distribution of relative frequencies of states will be very
close to the stationary distribution. In such a case, the process is said to be in
quasi-equilibrium. The number M is based on the requirement that at each value
of Tk quasi-equilibrium is restored.

Since at decreasing temperatures uphill transitions are accepted with decreasing
probabilities, one has to increase the number of iterations of the Metropolis loop
with decreasing T (so that the Markov chain at that particular temperature will
remain irreducible and with all states being non null). A factor β is used (β > 1)
which, in a geometric progression, increases the value of M . That is, each time the
Metropolis loop is called, T is reduced to αT and M is increased to βM .
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14.5.2.5 Weight Seclection

The neighborhood of each element of the weight vector is randomly selected
within a range of [weight element value, weight element value + 1]. Since the
number of elements of the weight vector equals the number of control points, this
range is selected in order to optimize the locality of the search. The details of the
implementation are as follows:

First of all, construct an initial NURBS curve using the weights, knots and the
measured control points. The initial solution S0 (NewS) of weight vector is cur-
rently assigned to the best solution (BestS). In the next step, we call Metropolis
iteration. In this step, we measure the value of cost function E (CurCost) and
assign a new cost. After perturbing the elements of the weight vector in a small
neighborhood ([wcur

i , wcur
i + 1] where wcur

i is the current weight corresponding
to the control point i), we calculate again the cost function E for the newly fitted
curve as NewCost. If the value of CurCost is less than NewCost, we assign the
current cost value as the new cost and weight vector corresponding to this cost
as the best solution (BestS). If the CurCost value is higher than in the compari-
son with NewCost, that means the perturb solution is worse than the original one.
In this case, we accept the new solution only on probability basis, that is, a ran-
dom number is generated between 0 and 1. If the generated random number is
smaller than e

CurCost−NewCost
T , where T is the current temperature, then we keep the

new settings. Otherwise, we neglect the perturb solution. This process is repeated
slowly by decreasing the temperature until the optimized solution is reached. The
flowchart for the NURBS curve approximation, based on simulated annealing, is
shown in Figure 14.11.

14.5.3 Demonstration
This section is meant for the demonstration of results achieved during the imple-
mentation of the SimA scheme. Some discussion is also made on the merits and
demerits of the schemes. We used the bitmap images as the input to the algorithm
for weight optimization of NURBS for curves. The general parameters taken for
curves are described as follows: While cooling, since small changes in tempera-
tures are desired, we have chosen the value of α as 0.99, which is close to unity.
Since the value of β should be greater than 1, a value of 1.5 is chosen. The algo-
rithm executes the Metropole function, based on Maxtime, which is set to 250.
The order k is chosen to be 4. The number of control points have been taken as
70. These are the default settings and hence can be changed by the users when
desired.

Figure 14.18 shows the calculation of the best cost by the SimA heuristic when
approximated the outline in Figure 14.13 of the pound image in Figure 14.12.
Figures 14.14–14.17 depict the intermediate fittings of the “pound” symbol for
weight optimization at various iterations. A gradual decrease in the (current) cost
function can be viewed in Figure 14.18. Figure 14.18 also shows that (current)
costs are selected for the next iteration, even if previous (current) costs were better,
to avoid getting trapped in the local minimum.



14.5. Approach Using SimA 317

START Input Control
Parameters.

Calculate the
parametric values
‘t’ through Chord-

length
parameterization.

Initialize So and
To.

While time <=
maxtime

Simulate the Annealing
Process by calling ‘metropol’
function at temperature ‘T’
and no. of iterations ‘M’, to

get BestS of weights.

Time =Time +M

T = alpha * T
M = beta * M

Store the weights
vector in BestS

Fit the curve using
NURBS.

END

While (annealing
time ‘M’)>0

Calculate new
solution ‘NewS’

Calculate
NewCost=Cost(NewS)

Calculate
dCost=NewCost-

CurCost.

Is dCost < 0

Is RANDOM
<

e(-dCost/T)

Is
New Cost<Best

Cost

YESNO

BestS=NewS

YES

M=M−1

CurS=NewS

YES

M=M−1

metropol

Generate Control
Points using least

squares
Technique

Calculate Uniform
Knot Vector.

Get
Digitized
Image.

FIGURE 14.11. Flowchart for weight optimization of NURBS using simulated annealing.

Table 14.4 shows that he Metropole function executes time+ M , that is, 238.5+
168.75, which is equal to 407 number of times, which is correctly shown in
Figure 14.17. The BestCost (leasterror) is found to be 3.378 units and the exe-
cution time is found to be 530.859 seconds.
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FIGURE 14.12. Bitmap image “Pound.”

FIGURE 14.13. Outline of the image “Pound.”
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FIGURE 14.14. SimA based NURBS approximated image at 51st iteration.
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FIGURE 14.15. SimA based NURBS approximated image at 126th iteration.

0
0 20 40 60 80 100 120 140

50

100

150

Fitted Curve
Time=238.5

FIGURE 14.16. SA-based NURBS approximated image at 238th iteration.

The experimental results using the bitmap image “Pound” have shown that the
performance of the method is not very pleasing since the corner points of the image
do not appear in the resulting curves. However, this deficiency can be removed
when the idea of a corner point is incorporated into the algorithm. In this way, one
can break the overall boundary at the corner points. Breaking the overall boundary
at the corner points may definitely help to achieve better results, but it can open
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FIGURE 14.17. SA-based NURBS approximated image at 256th iteration.

FIGURE 14.18. Error function (E) vs. total number of iterations (Time + M).

up with a huge computation cost due to repetition of the algorithm in a num-
ber of divided segments. Therefore, we propose the scheme to be used for images
without corner points.
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TABLE 14.4. Weight optimization parameters for “Pound.”

Name POUND

dpts (# of data points) 688
k (order of NURBS) 4
npts (# of control points) 70
α (cooling rate) 0.99
β (constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (least error) 3.378
Execution time (sec) 530.859
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FIGURE 14.19. Outline image for the character “h.”

FIGURE 14.20. NURBS approximation at final (256th) iteration.

Figure 14.20 shows the result of an another outline image in Figure 14.19 for
the character “h.” Some analysis, in terms of time and sum square error, is given
in Table 14.5.



322 14 Computer-Aided Reverse Engineering

TABLE 14.5. Weight optimization results summary, for the the algorithm, using SimA.

Shapes Data points SimA weight optimization
Time Least error

Pound 688 530.859 3.378
Aich 787 625.406 14.332

FIGURE 14.21. Original “surface 1.”

TABLE 14.6. Input parameters for “surface1” fitting using SimE.

Name Surface1
Mesh size 21 × 21
Order in u direction 4
Order in v direction 4
Control points in u direction 10
Control points in v direction 10
Bias value −0.5
Maximum no. of iterations 100

14.6 Surfaces

The two schemes SimE and SimA have also been tested for the surface data. The
input “Surface1” for weight optimization of the NURBS surface using SimE is
shown in Figure 14.21. The control parameters used for the surface are given in
Table 14.6. Figures 14.22 and 14.23 depict fitting at 10th and 50th iterations. The
final NURBS approximated surface is shown in Figure 14.24 at the 100th iteration.
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FIGURE 14.22. Approximated NURBS Surface at 10th iteration.

FIGURE 14.23. Approximated NURBS surface at 50th iteration.

We can observe an increase in fitting accuracy from Figure 14.25 as the number
of iterations increased. Figure 14.26 depicts the actual reduction in the cost as the
number of iterations increase. From this it is clear that by mutating weight vector
of the patches there is a development in the smoothness of the surface.

The input “surface2” for weight optimization of the NURBS surface using
SimA is shown in Figure 14.27. Table 14.7 shows the various parameters used and
generated in the weight optimization of “surface 2.” The BestCost (least error) is
found to be 0.1925 units and the execution time is found to be 117.016 seconds.

Figures 14.28 and 14.29 depict the intermediate fittings of the “surface 2” at
iterations (Time+i) = 51 and 126, respectively, and Figure 14.30 shows the fitting
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FIGURE 14.24. Approximated NURBS surface at 100th iteration.

FIGURE 14.25. Sum square error versus number of iterations for “surface1” using SimE.

for the actual iteration of 250 (Maxtime), where “I ” iterates over annealing time
“M .” Figure 14.31 depicts the actual reduction in the costs (error) as the number
of iterations increase.
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FIGURE 14.26. Average goodness plotted against number of iterations for “surface1”
using SimE.

FIGURE 14.27. Original “surface 2.”
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TABLE 14.7. Input parameters for surface2 fitting using SimA.

Name Surface2
dpts (# of data points) 441
k (order in “u” direction) 4
l (order in “w” direction) 4
npts (control points in “u”direction) 8
mpts (control points in “w” direction) 8
α (cooling rate) 0.99
β (constant) 1.5
M (annealing time) 50
MaxTime 250
BestCost (least error) 0.1925
Execution time (sec) 117.016

FIGURE 14.28. Approximated NURBS surface at 51st iteration.
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FIGURE 14.29. Approximated NURBS surface at the 126th iteration.

FIGURE 14.30. Approximated NURBS Surface at the 250th iteration.
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FIGURE 14.31. Demonstration of reduction in the costs (error) as the number of iterations
increase for “surface2” using SimA.

14.7 Summary

Two computer-aided reverse engineering techniques have been described for pla-
nar objects, which are also extendable to surfaces. Although the two techniques
have been suggested and adopted for image-based planar objects, they are extend-
able to objects in 3D with some modifications. The schemes for the capture of
optimized curves have been described in detail. However, the explanation for the
surface case has not given since it is beyond the scope of this book, and some
demonstration has been given for the sake of completion.

In this chapter we provided a robust and automated methodology for the appli-
cation of reverse engineering technology in manufacturing and other industries.
By extracting nearly exact geometric data of the models, the corner points from
the data have been detected. Then the curve or surface models have been fitted
using nonuniform rational B-splines (NURBS). Two applications of evolutionary
heuristic techniques known as “simulated evolution” and “simulated annealing” to
the curve and surface-fitting problems using NURBS have been given. Applying
these heuristics can save many of the complications that can arise in traditional
solutions of the problem.

The adopted approaches present methods for approximating NURBS using dig-
itized data. The shape parameters, in the description of NURBS, have been tar-
geted to be optimized in the best possible way. The overall algorithms have been
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devised to combine various faces including scanning and obtaining a digital out-
line, acquiring data, detecting corner points, generating control points, and com-
puting optimized curves or surfaces by optimizing the shape parameters in the
description of the NURBS using simulated evolution and simulated annealing
heuristics. Demonstration of the two schemes has been made by implementing
them in practical examples. Both curve and surface fittings have been made with
many interesting results obtained.

14.8 Exercises

1. Write a program, using chord length parameterization, to plot a NURBS cubic
curve with the given input control points. The program should also assume user
input for the weight parameters.

2. Repeat Exercise 1 using unit length parameterization.
3. Implement the SimE-based methodology for the reverse engineering purpose

for planar images using NURBS.
4. Implement the SimA-based methodology for the reverse engineering purpose

for planar images using NURBS.
5. Design and implement the SimE-based methodology for the reverse engineer-

ing purpose for planar images using the weighted Nu-spline of Chapter 2.
6. Design and implement the SimA-based methodology for the reverse engineer-

ing purpose for planar images using the weighted Nu-spline of Chapter 2.
7. Compare the results of Exercises 3 and 4 with respect to time and number of

iterations for the same image, same degree of NURBS and same error thresh-
old.

8. Compare the results of Exercises 5 and 6 with respect to time and number of
iterations for the same image, same degree of NURBS and same error thresh-
old.

9. What is your conclusion after making analysis in Exercises 7 and 8?
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15
Multiresolution Framework
for B-Splines

Abstract. The piecewise polynomial B-spline representation is a flexible tool in CAGD for
representing and designing geometric objects. In the field of computer graphics (CG),
computer-aided design (CAD), or computer-aided engineering (CAE), a very useful
property for a given spline model is to have locally supported basis functions. This
allows localized modification of the shape. Unfortunately this property can also become a
serious disadvantage when the user wishes to edit the global shape of a complex object.
Multiresolution representation is proposed as a solution to alleviate this problem. Various
multiresolution methods are described for different B-spline models.

15.1 Introduction

In the field of geometric modeling, the construction of efficient, intuitive and inter-
active editors for geometric objects is a fundamental objective, but it is still a
difficult challenge. In many freeform geometric modeling systems the users are
allowed to work in the framework of a specific data model such as Bézier or
nonuniform rational B-splines [6]. This imposes constraints on the set of geo-
metric manipulation operations that can be performed, the man-machine interface
and the type of objects that can be modeled.

There are various curve manipulation techniques proposed in the current liter-
ature [1–21]. The Euclidean distances between the point of modification and the
control points of a B-spline curve were used as weights to affect the control points
in [4]. The difficulty with this approach appears when the two separate portions
of the curve are close. To alleviate the difficulty in editing freeform shapes while
matching engineering specifications, constraint-based approaches have been pro-
posed in [2, 22]. Direct and interactive manipulation tools of freeform curves and
surfaces are investigated in [5].

In the field of computer graphics or computer-aided design, a very useful prop-
erty for a given spline model is to have locally supported basis functions. This
property allows localized modifications of the shape. Unfortunately this property
can also become a serious disadvantage when the user wishes to edit the global
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shape of a complex object. Piecewise polynomial B-spline representation is com-
mon in many contemporary geometric modeling systems. While this is a powerful
tool with many desirable properties, the same properties impose some undesirable
constraints on the user. For example, the most attractive property, locality, restricts
the user to perform global operations on the object being modeled. To perform a
global operation, it has to be transformed into a series of local operations affecting
only a small portion of the curve, which makes the process time a waste and preci-
sion hazardous [12]. The ability to simultaneously perform both local and global
operations at will would add significant functionality to any modeling system.

Multiresolution representation is a possible solution that addresses this prob-
lem, because it allows the user to edit objects at different resolution levels. Both
local and global operations can be performed on curves by representing them
using multiresolution decomposition. Several approaches have been proposed for
multiresolution representation of splines, mostly based on wavelets. All these
approaches involve expensive precalculations in the case of curves and surfaces.
It often requires specific treatment of boundary control points. Moreover, these
approaches depend on the given spline model they manipulate. The whole scheme
has to be redefined when it comes to manipulating other spline models; only the
philosophy of the calculus can potentially be reused [12].

All the approaches presented are either for the uniform B-splines or nonuniform
B-splines (NUBS). NUBS are useful because:

• By manipulating the control points, knot vector and weights, NUBS provides
the facility to design a large variety of shapes.

• They offer a common mathematical form for representing and designing both
standard analytic shapes (conics, quadrics) and freeform curves and surfaces.

• Evaluation is reasonably fast and computationally stable.
• NUBS have clear geometric tool kit (knot insertion/deletion, degree elevation,

etc.), which can be used to design, analyze, process and interrogate objects.

In this chapter, Section 15.2 describes the general theory of B-splines. In
Section 15.3, we discuss two of the multiresolution representations presented for
B-splines. Section 15.4 is about another method for multiresolution representation
for NUBS; it is based on control point decimation. This method, in Section 15.5,
is demonstrated by means of graphics.

15.2 Theory of NUBS

The general expression for the calculation of coordinate positions along a B-spline
curve in a blending function formulation is of the form:

P(t) =
n∑

i=0

Pi Bi,p(t), tmin ≤ t < tmax, 2 ≤ p ≤ n + 1,

where Pi is an input set of n+1 control points and the B-spline blending functions
Bi,p are polynomials of degree p. The Cox Deboor [7, 13] recursive formula for
the B-spline basis can be defined as:
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Bi,1(t) =
{

1, if ti ≤ t ≤ ti+1

0, otherwise.

and

Bi,p(t) = (t − ti )Bi,p−1(t)
ti+p−1 − ti

+ (ti+p − t)Bi+1,p−1(t)
ti+p − ti+1

,

where a knot vector t = {t0, t1, . . . , tm} of m + 1 knots is assumed. NUBS
are nonuniform B-splines and is the term given to curves that are defined on a
knot vector where the interior knot spans are not equal. As an example, we may
have interior knots with spans of zero. Some common curves require this type of
nonuniform knot spacing. The use of this option allows better shape control and
the ability to model a larger class of shapes.

15.3 Multiresolution Representation of B-Splines

In the fields of computer graphics or computer-aided design, a very useful prop-
erty for a given spline model is to have locally supported basis functions in order
to allow localized modifications of the shape. Unfortunately, this property can
also become a serious disadvantage when the user wishes to edit the global shape
of a complex object. Piecewise polynomial B-spline representation is common
in many contemporary geometric modeling systems. While this is a powerful tool
with many desirable properties, the same properties impose some undesirable con-
straints on the user. For example, the most attractive property, locality, restricts
the user to perform global operations on the object being modeled. To perform a
global operation, it has to be transformed into a series of local operations affecting
only a small portion of the curve, which makes the process a waste of and preci-
sion hazardous [12]. The ability to simultaneously perform both local and global
operations at will would add significant functionality to any modeling system.

Multiresolution representation is a possible solution that addresses this prob-
lem, because it allows the user to edit objects at different resolution levels. Both
local and global operations can be performed on curves by representing them using
multiresolution decomposition. Multiresolution analysis can be defined as an abil-
ity to simultaneously perform both local and global operations on the analyzed
object [6]. Several approaches have been proposed for multiresolution representa-
tion of splines, mostly based on wavelets. All these approaches involve expensive
precalculations and in the case of open curves and surfaces, often require specific
treatment of boundary control points. Moreover, these approaches depend on the
given spline model they manipulate; the whole scheme has to be redefined when
it comes to manipulating other spline models, only the philosophy of the calculus
can potentially be reused [12].

For the sake of completeness, two of the existing approaches for the multi-
resolution representation of B-splines are briefly presented. One uses B-spline
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wavelets for endpoint interpolating B-splines. Another deals with multiresolution
control for nonuniform B-splines, which uses the knot decimation and least
squares approximation.

15.3.1 Multiresolution Representation of B-Splines
Using Wavelets

To understand the basic ideas behind wavelets and multiresolution analysis, con-
sider a discrete signal Cn , expressed as column vector of samples. The samples
can be the control points of the curve if we want to create a low-resolution version
Cn−1 of Cn with a fewer number of samples m′. The approach is to use some form
of filtering and downsampling on m samples of Cn . This process can be expressed
as the matrix equation:

Cn−1 = AnCn, (15.1)

where An is m′ × m matrix.
Since Cn−1 contains fewer samples than Cn , it is clear that some amount of

detail is lost in the filtering process. If An is appropriately chosen, it is possible to
capture the lost details as another signal Dn−1, given as:

Dn−1 = BnCn, (15.2)

where Bn is (m − m′)× m matrix, which is related to matrix An . The matrices An

and Bn are called analysis filters. The process of splitting Cn into low-resolution
version Cn−1 and detail Dn−1 is called decomposition.

If An and Bn are chosen correctly, the original signal Cn can be recovered from
Cn−1 and Dn−1 by using another pair of matrices Pn and Qn as

Cn = PnCn−1 + Qn Dn−1, (15.3)

The recovery process of Cn from Cn−1 and Dn−1 is called reconstruction, and the
pair of matrices Pn and Qn are called synthesis filters. The procedure of splitting
Cn into a low-resolution part Cn−1 and a detail part Dn−1 can be applied recur-
sively to the new signal Cn−1. Thus, the original signal can be decomposed as a
hierarchy of low-resolution signals C0, . . . , Cn−1 and details D0, . . . , Dn−1. This
recursive process is known as a filter bank.

Since the original signal Cn can be recovered from the sequence C0, D0, D1, . . . ,
Dn−1, this sequence can be thought of as a transform of the original signal, known
as wavelet transform. The total size of the transform C0, D0, D1, . . . , Dn−1 is the
same as that of the original signal Cn , that is, no extra storage is required. For the
detailed description, refer to [19–21].

For performing the wavelet transform, all that is needed is an appropriate set of
analysis and synthesis filters A j , B j , P j , and Q j . To construct these filters, each
signal Cn is associated with a function f n(u) with u ∈ [0, 1] given by:

f n (u) = �n (u) Cn, (15.4)
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where �n (u) is a row matrix of basis functions
[
φn

1 (u) , . . . , φn
1 (u)

]
called scal-

ing functions.
The scaling functions are required to be refinable; that is, for all j in [1, n] a

matrix P j must exist such that

� j−1 = � j P j . (15.5)

Each scaling function at level j − 1 must be expressible as a linear combination
of finer scaling functions at level j .

Next, let V j be the linear space spanned by the set of scaling functions � j .
From Equation (15.5), it is implied that these spaces are nested, that is, V 0 ⊂
V 1 ⊂ . . . ⊂ V n . Choosing an inner product for the basis functions in V j allows
us to define W j as the orthogonal complement of V j in V j+1, that is, the space
W j whose basis functions � j =

[
ψn

1 (u) , . . . , ψn
m−m′ (u)

]
are such that � j and

� j together form a basis for V j+1, and every ψ
j

i (u) is orthogonal to every φ
j
i (u)

under the chosen inner product. The basis functions ψ
j

i (u) are called wavelets.
The synthesis filter Q j can be constructed as the matrix that satisfies

� j−1 = � j Q j . (15.6)

The above two equations can be expressed as a single equation by concatenating
the matrices together:

[� j−1|� j−1] = � j [P j |Q j ]. (15.7)

The analysis filters A j and B j are formed by the matrices satisfying the inverse
relation:

The matrices [P j |Q j ] and [A j |B j ]T are both square matrices. Therefore, we
have the following:

[� j−1|� j−1]
[

A j

B j

]
= � j ,

[
A j

B j

]
=
[

P j |Q j
]−1

.

15.3.2 Multiresolution of NUBS Using Knot Decimation
Another method described is for the multiresolution representation of nonuniform
B-splines (NUBS) as presented in [6]. The multiresolution decomposition of the
freeform NUBS curve is computed using the least-squares approximation based
on existing data-reduction techniques. The least-squares decomposition allows
the support of NUBS curves, but it also imposes some processing penalties in
both time and space compared to techniques for multiresolution uniform B-spline
curves [6].

Let Ck(t) be a B-spline curve of order n and lk control points, defined over the
knot vector τk , where k ∈ Z+. Let Vk be the space induced by τk , and let τk−1 ⊂
τk . The new space induced by τk−1, denoted by Vk−1 is clearly a strict subspace
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of Vk . Now, suppose Ck−1(t)(∈ Vk1) is the least-squares approximation of Ck(t)
in the space Vk−1, and their difference is the detail Dk−1(t) ∈ Vk , given by:

Dk−1 (t) = Ck (t) − Ck−1 (t) . (15.8)

This process of decomposing a curve into two parts, one a low-resolution
approximation and one a high-resolution detail can be applied recursively. The
value of Ck(t) can then be expressed as:

Ck (t) C0 (t) +
k−1∑

i=0

Di (t), (15.9)

where C0 (t) ∈ V0 and Di (t) ∈ Vi+1. In order to construct a multiresolution
decomposition of a NUBS curve, as in the above equation, the knot sequence
τi , inducing the subspaces Vi must first be defined. The value of τk is the knot
vector of the original curve; the subsequent knot vectors τi , 0 ≤ i < k, can be
constructed such that τi ⊂ τi+1 and 2|τi | ≈ |τI+1|, where || denotes the size of
the knot vector. The end conditions of the original curve must be preserved; hence
the knots τ j ∈ τi , 0 ≤ j < n and li ≤ j < li + n, ∀0 ≤ i < k are unmodified,
where li denotes the number of control points defining Ci (t) over τi . In general,
li = |τi | + n. This knot decimation process defines the function space hierarchy
and is independent of the specific curve being decomposed.

For a B-spline curve with knot vector τk of size 2k , k subspaces will be con-
structed; each induced by approximately half the knots of the previous level. The
lowest resolution approximation C0(t) will a single polynomial curve, that is,
the knot vector τ0 has no interior knots (τ0 = 2n). Least-squares techniques are
employed to find the curve Ci (t) ∈ Vi , defined over τi , best approximating Ck(t).

Knots are selected so as to minimize the local effect on the curve due to
removals from level i to level I + 1. Hence, consecutive knots should not be
removed in one step. Removing every nth knot, where n is the order of the curve
that will cause the least change from one level to the next, yet affect the entire
curve. As the degree of a Bézier or B-spline curve is increased, the curve becomes
smoother due to the low-pass property of the basis functions of the representation.
Therefore, as n increases, by selecting every nth knot for removal, the knots are
removed at larger intervals, yet the curve becomes smoother. In practice, it is found
that removing every alternate knot still retains a sufficient number of resolution
levels to enable an effective multiresolution control. Moreover, the computational
overhead required for the algebraic summation is kept at interactive speeds.

15.4 Multiresolution of NUBS Using Control Point
Decimation

In this section, we present a model based on control point decimation for multires-
olution representation of NUBS. By using the ability to control a B-spline curve
by changing the position and order of the control points, we can come up with a
multiresolution representation for NUBS.
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Let Ck(t) be a NUBS curve, defined over the set of polygon vertices or control
points Pk , containing lk points. Let the curve uses the knot vector Tk , where k is
a positive integer, greater than zero. There are various methods proposed for the
calculation of nonuniform knots. A popular method is to calculate the knot vector
proportional to the chord lengths between the defining polygon vertices. We use
the same knot calculation method. The NUBS curve Ck(t) is calculated from the
control points Pk as described in detail in Section 15.2.

Let Vk be the space of all the curves that can be defined using control points Pk .
Now, we find a subset Pk−1 of Pk(Pk−1 ⊂ Pk); clearly the space Vk−1 induced
by Pk−1 is a subset of Vk . Let Ck−1(t) ∈ Vk−1 be a curve defined over the control
points Pk−1. We find that it is the approximation to the higher-resolution curve
Ck(t). To find Pk−1 from Pk , we use the process of decimation.

Let a unary operator d j be defined for decimation, where j denotes the interval
that is used to decimate the control points. If j is 2 then every second (alternate)
control point is decimated; if j is 3 then select every third control point (i.e.,
control points numbered 3, 6, 9, etc.) for removal. Similarly, if j is i then decimate
every i th control point. Mathematically, control point decimation is given by:

Pk−1 = d j (Pk). (15.10)

To minimize the local effect on the resulting curve Ck−1(t), consecutive control
points from Pk should not be removed to obtain Pk−1. It is observed that removing
every alternate point causes the acceptable amount of local effect and still retains
a sufficient number of resolution levels to enable an effective multiresolution con-
trol. The lost control points can be captured as Qk−1.

Let another unary operator c j be defined to capture the decimated control points.
Here also j denotes the interval used to decimate the points. Mathematically Qk−1
can be computed as:

Qk−1 = c j (Pk). (15.11)

The process of decomposition can be applied recursively until P0, which con-
tains only n control points where n is the order of the B-spline curve. The fol-
lowing algorithm summarizes the multiresolution decomposition process, and the
flow chart in Figure 15.1 shows it pictorially.

INPUT:
Ck(t), a NUBS curve.

OUTPUT:
P0, Qi , 0 ≤ i < k, the multiresolution decomposition of Ck(t).
ALGORITHM:
• Pk ⇐ control points of Ck(t);
• for i = k − 1 to 0 step −1 do
begin

Pi = d j (Pi+1);
Qi = c j (Pi+1);

end;
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NO

Pk = Control Points of Ck (t)

i = k − 1

Pi = d j (Pi+1)

Qi = cj (Pi+1)

i = i − 1

i < 0

END

START

YES

FIGURE 15.1. Flow chart of the multiresolution decomposition process.

The reconstruction of Pi from Pi−1 and Qi−1 is carried out by merging the
sets Pi−1 and Qi−1. Let a binary operator r j be defined for the process of
reconstruction of Pi from Pi−1 and Qi−1. The reconstruction is mathematically
represented as:

Pi = r j (Pi−1, Qi−1). (15.12)



15.5. Demonstration 339

While reconstructing, the criteria used for the decomposition should be fol-
lowed. For example, if every j th point is decimated during decomposition, then
the reconstruction of Pi is obtained by rearranging Pi−1 and Qi−1 as; place ( j −1)
points from Pi−1 and one point from Qi−1 in the same order and so on.

By means of recursively applying the reconstruction operator, the original set
of control points can be represented in terms of its multiresolution components as:

Pk = r j (P0, Q0, Q1, Q2, . . . , Qk−1). (15.13)

The recursion in Equation (15.13) can be expanded as follows:

Pk = r j (r j (P0, Q0), Q1, Q2, . . . , Qk−1)

= r j (P1, Q1, Q2, . . . , Qk−1)

= r j (r j (P1, Q1), Q2, . . . , Qk−1)

. . .

= r j (Pk−1, Qk−1)

15.5 Demonstration

In this section, the multiresolution representation of Section 15.5 is demonstrated
by applying it to NUBS curves. This scheme is also demonstrated for surfaces as
an extension. Figure 15.2 shows a NURBS curve of degree 3 consisting of 319
control points with default weight values. In total, six multiresolution levels are
obtained for this curve, as shown in Figure 15.3. The original curve is shown in
thin lines and the curves in thick lines are the decomposed versions at each level
of multiresolution. We assume that the original curve is at level 6; the curve in
Figure 35.3(a) consists of 159 control points and is at level 5. Similarly, the curves
in Figure 15.3(b)–(f) contain 80, 40, 20, 10 and 5 control points and are at decom-
position level 4, 3, 2, 1, and 0, respectively.

Figure 15.4 shows another NUBS curve drawn with 259 control points. After
applying the multiresolution decomposition, the decomposed curves are obtained

FIGURE 15.2. A NUBS curve.
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FIGURE 15.3. Multiresolution decomposition of the NUBS curve in Figure 15.2.

FIGURE 15.4. Another NUBS curve.

as shown in Figure 15.5. Figures 15.5(a)–(f) contain 130, 66, 34, 18, 10 and 6
control points, respectively.

As part of the muiltiresolution representation of NUBS surfaces, Figure 15.6
shows a NUBS surface drawn with 30 × 30 mesh of control points. This surface
is decomposed by applying the multiresolution decomposition to obtain the low-
resolution versions as shown in Figure 15.7. The surfaces in Figures 15.7(a)–(c)
consist of 15 × 15, 8 × 8, and 4 × 4 mesh of control points, respectively.



15.6. Summary 341

FIGURE 15.5. Multiresolution decomposition of the curve in Figure 15.4.

FIGURE 15.6. A NUBS surface.

Figure 15.8 shows another NUBS surface with 33 × 33 mesh of control points,
its decomposed version of the surfaces are shown in Figures 15.9(a)–(c), consist-
ing of 17 × 17, 9 × 9, and 5 × 5 mesh of control points, respectively.

15.6 Summary

A framework for multiresolution representation of NUBS is developed for use in
various computer graphics applications that require both local and global opera-
tions to be performed on B-splines. The developed method of multiresolution can
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FIGURE 15.7. Multiresolution decomposition levels of the surface in Figure 15.6.

FIGURE 15.8. Another NUBS surface.

be used for the purpose of performing editing on the B-splines. The idea of mul-
tiresolution representation of NUBS curves is extended to achieve multiresolution
control for surfaces as well. The method is very efficient with respect to execu-
tion time as it uses a very simple technique for the decomposition, which does not
require extensive calculations. The method presented is not capable of providing
a continuous resolution control, that is, the decomposition at fraction levels.
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FIGURE 15.9. Multiresolution decomposition of the surface in Figure 15.8.

15.7 Exercises

1. Implement the multiresolution method of Section 15.3.1.
2. Implement the multiresolution method of Section 15.3.2.
3. Implement the multiresolution method of Section 15.4.
4. Make a comparative study of the three schemes in Exercises 15.6.1–15.6.3 with

respect to time.
5. Make a critical thinking on a possible extension to the scheme in Section 15.4

so that it has the ability to have a continuous multiresolution control. This
would add a significant functionality to this method.

6. Extend the method in Section 15.4 to the weighted Nu-splines of Chapter 2 that
has the similar properties as those of NUBS but with extra freedom of shape
parameters. (Hint: Sometimes we encounter curves and surfaces in which some
control points are significant. Decimation of these control points may drasti-
cally change the shape of the object. In view of this, there should be an intelli-
gent technique that can check these significant points at the time of decimation.
This can be achieved by assigning a weight value for each point based on its
significance.)
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